
Language Support for Generic Programming
in Object-Oriented Languages: Design Challenges

Julia Belyakova
Institute for Mathematics, Mechanics

and Computer Science
named after I. I. Vorovich

Southern Federal University
Rostov-on-Don, Russia
Email: julbel@sfedu.ru

Abstract—It is generally considered that object-oriented (OO)
languages provide weaker support for generic programming
(GP) as compared with such functional languages as Haskell
or SML. There were several comparative studies which showed
this. But many new object-oriented languages have appeared
in recent years. Have they improved the support for generic
programming? And if not, is there a reason why OO languages
yield to functional ones in this respect? In the earlier comparative
studies object-oriented languages were usually not treated in any
special way. However, the OO features affect language facilities
for GP and a style people write generic programs in such
languages. In this paper we compare ten modern object-oriented
languages and language extensions with respect to their support
for generic programming. It has been discovered that every of
these languages strictly follows one of the two approaches to
constraining type parameters. So the first design challenge we
consider is “which approach is better”. It turns out that most
of the explored OO languages use the less powerful one. The
second thing that has a big impact on the expressive power of
a programming language is support for multiple models. We
discuss pros and cons of this feature and its relation to other
language facilities for generic programming.

I. INTRODUCTION

Almost all modern programming languages provide lan-
guage support for generic programming (GP) [1]. Some
languages do it better than others. For example, Haskell is
generally considered to be one of the best languages for
generic programming [2, 3], whereas such mainstream object-
oriented languages as C# and Java are much less expres-
sive and have many drawbacks. There were several studies
that compared language support for generic programming
in different languages [2–5]. However, these studies do not
make any difference between object-oriented and functional
languages. We argue that OO languages are to be treated
separately, because they support the distinctive OO features
that pure functional languages do not, such as inheritance,
interfaces/traits, subtype polymorphism, etc. These features
affect the language design and a way people write generic
programs in object-oriented languages.

Several new object-oriented languages have appeared in
recent years, for instance, Rust, Swift, Kotlin. At the same
time, several independent extensions have been developed for
mainstream OO languages [6–9]. These new languages and

extensions have many differences, but all of them tend to
improve the support for generic programming. There is a lack
of a careful comparison of the approaches and mechanisms
for generic programming in modern object-oriented languages.
This study is aimed to fill the gap: it gives a survey, analysis,
and comparison of the facilities for generic programming that
the chosen OO languages provide. We identify the depen-
dencies between major language features, detect incompatible
ones, and point the properties that a language design should
satisfy to be effective for generic programming.

II. MAIN IDEAS

Ten modern object-oriented languages and language exten-
sions have been explored in this study with respect to generic
programming. We have found out that in the case of OO
languages there are exactly two approaches to the design of
language constructs for generic programming. We call the first
one “constraints-are-types”, because under this approach such
OO constructs as interfaces or traits, which are usually used as
types in object-oriented programs, are also used to constrain
type parameters in generic programs. The second approach,
“constraints-are-Not-types”, restricts OO constructs to be used
as types only, and provides separate language constructs for
constraining type parameters. Hence the first design challenge
arises: is one of this approaches better than another? Or the
same expressive power can be achieved using any of them?
We answer these questions in Sec. III. It turns out that the
approaches cannot be integrated together, and the second one
is more expressive.

The second point covered in the paper in detail (in Sec. IV)
is language support for multiple models (by “model” we mean
a way in which types satisfy constraints). There are several
questions related to multiple models:

1) Is it desirable to have multiple models of a constraint?
2) How can support for multiple models be provided with

the approaches we have discovered?
3) Why does not Haskell allow multiple models (instances

of a type class)?
4) Is there a language design that reflects the support for

multiple models better than the existing ones?
The short answers are:

9 of 251



interface IPrintable { string Print(); }

void PrintArr(IPrintable[] xs)
{ foreach (var x in xs)

Console.WriteLine("{0}\n", x.Print()); }

string InParens<T>(T x) where T : IPrintable
{ return "(" + x.Print() + ")"; }

Fig. 1. An ambiguous role of C# interfaces

1) Yes, it is desirable.
2) It can be naturally provided with the second approach

but not with the first one.
3) Because of type inference.
4) Yes, there is.
In conclusion, we present a modified version of the well-

known table [2, 4] showing the levels of language support
for the features important for generic programming. Table I
provides information on all of the object-oriented languages
considered, introduces some new features, and demonstrates
the relations between the features.

III. TWO APPROACHES TO CONSTRAINING TYPE
PARAMETERS

This section provides a survey of language constructs for
generic programming in several modern object-oriented pro-
gramming languages as well as some language extensions. All
of the languages we explored adopt one of the two approaches:

1) Interface-like constructs, which are normally used as
types in object-oriented programming, are also used to
constrain type parameters. By “interface-like constructs”
we mean, in particular, C#/Java interfaces, Scala traits,
Swift protocols, Rust traits. Fig. 1 shows a corresponding
example in C#: IPrintable interface acts as the type of
xs in PrintArr, whereas in the function InParens<T> it
is used to constrain the type parameter T.

2) For constraining type parameters a separate language
construct is provided; such construct cannot be used as
a type. We will see some examples in Sec. III-B.

Sec. III-A analyses the languages of the first category;
Sec. III-B is devoted to the second one. In Sec. III-C we
compare both approaches and answer the question “Which
one is better if any?”.

A. Languages with “Constraints-are-Types” Philosophy

C# and Java are probably the best-known programming
languages in this category. Note that an interface (or a similar
language construct) describes properties, an interface of a
single type that implements/extends it. This has inevitable
consequence: multi-type constraints (constraints on several
types) cannot be expressed naturally. Consider a generic
unification algorithm [10]: it takes a set of equations between
terms (symbolic expressions), and returns the most general
substitution which solves the equations. So the algorithm
operates on three kinds of data: terms, equations, substitutions.
A signature of the algorithm might be as follows:
Substitution Unify<Term, Equation, Substitution>

(IEnumerable<Equation>)

interface ITerm<Tm> { IEnumerable<Tm> Subterms(); ... }

interface IEquation<Tm, Eqtn, Subst>
where Tm : ITerm<Tm>
where Eqtn : IEquation<Tm, Eqtn, Subst>
where Subst : ISubstitution<Tm, Eqtn, Subst>

{ Subst Solve();
IEnumerable<Eqtn> Split(); ... }

interface ISubstitution<Tm, Eqtn, Subst>
where Tm : ITerm<Tm>
where Eqtn : IEquation<Tm, Eqtn, Subst>
where Subst : ISubstitution<Tm, Eqtn, Subst>

{ Tm SubstituteTm(Tm);
IEnumerable<Eqtn> SubstituteEq (IEnumerable<Eqtn>); ... }

Fig. 2. The C# interfaces for unification algorithm

interface IComparable<T> { int CompareTo(T other); }

class SortedSet<T> where T : IComparable<T> {...}

Fig. 3. The IComparable<T> interface in C#

But a bunch of functions has to be provided to implement the
algorithm: Subterms : Term → IEnumerable<Term>,
Solve : Equation → Substitution,
SubstituteTm : Substitution × Term → Term,
SubstituteEq : Substitution × IEnumerable<Equation>

→ IEnumarable<Equation>, and some others. All these functions
are needed for unification at once, hence it would be con-
venient to have a single constraint that relates all the type
parameters and provides the functions required.
Substitution Unify<Term, Equation, Substitution>
(IEnumerable<Equation>) where <single constraint>

But in C#/Java the only thing one can do1 is to define three
different interfaces for Term, Equation, and Substitution,
and then separately constrain every type parameter with a
respective interface. Fig. 2 shows the interface definitions. To
set up a relation between mutually dependent interfaces, three
type parameters are used: Tm for terms, Eqtn for equations,
and Subst for substitution. Moreover, the parameters are
repeatedly constrained with the appropriate interface in every
interface definition. That constraints are to be stated in a
signature of the unification algorithm as well:
Subst Unify<Tm, Eqtn, Subst> (IEnumerable<Eqtn>)

where Tm : ITerm<Tm>
where Eqtn : IEquation<Tm, Eqtn, Subst>
where Subst : ISubstitution<Tm, Eqtn, Subst>

There is one more thing to notice here — interfaces are used in
both roles in the same piece of code: the IEnumerable<Eqtn>

interface is used as a type, whereas other interfaces in the
where sections are used as constraints.

The problem of multi-type constraints is a common thing
for OO languages in the first category, but C# and Java have
various drawbacks besides that [2, 8]. In comparison with other
programming languages that support generic programming
(not only object-oriented), these are much less expressive. An
incomplete list of drawbacks is enumerated below.

1The Concept design pattern can also be used, but it has its own drawbacks.
We will discuss concept pattern later, in Sec. IV-C2.

10 of 251



∙ Lack of retroactive interface implementation. After the
type had been defined, it cannot implement any new
interface. A consequence is that a generic code with
constraints on type parameters can only be instantiated
with types originally designed to satisfy these constraints.
It is impossible to adapt the type afterwards, even if it
semantically conforms the constraints.

∙ Drawbacks of F-bounded polymorphism. F-bounded
polymorphism [11] allows “recursive” constraints (F-
constraints) on type parameters in the form T : I<T>,
where T is a type parameter, I<> is a generic in-
terface. Such kind of constraints solves the binary
method problem [12]: Fig. 3 demonstrates a correspond-
ing C# [13] example. The type parameter T in the inter-
face IComparable<T> pretends to be a type that imple-
ments this interface. This is indeed the case for the class
SortedSet<T> due to the constraint T : IComparable<T>,
so the method T.CompareTo(T) is like a binary function
for comparing elements of type T. But the semantics
of IComparable<T> itself has nothing to do with binary
methods. One could easily write some class Foo imple-
menting IComparable<Bar>, and thus the semantics of
comparing two Bars would be broken. Another short-
coming of F-bounded polymorphism is that a code with
recursive constraints is rather cumbersome and difficult to
understand. Yet, as we will see, F-bounded polymorphism
is not the only solution for the binary method problem.
More detailed discussion on pitfalls of F-bounded poly-
morphism can be found in [8] and [14].

∙ Lack of associated types [14, 15]. Types that are logically
related to some entity are often called associated types
of the entity. For instance, types of edges and vertices are
associated types of a graph. There is no specific language
support for associated types in C# and Java: such types
are expressed in generic code in the form of extra type
parameters.

∙ Lack of constraints propagation [14, 15]. Look at the
following code:

void baz<T>(SortedSet<T> s)
where T : IComparable<T> { ... }

The function baz<T> takes a value of the type
SortedSet<T>; in the definition of SortedSet<T> in Fig. 3
the type parameter T, type of elements, is constrained
with IComparable<T>. In the baz<T> definition T has to be
also constrained, otherwise the code would not compile:
a compiler does not propagate the constraints implied by
formal parameters, that is a programmer’s burden.

Some of these drawbacks were eliminated in modern object-
oriented languages. In the following subsections we briefly
examine language facilities for generic programming in the
modern OO languages with “constraint-are-types” philosophy.

1) Interfaces in Ceylon and Kotlin: In contrast to C#,
Ceylon [16] and Kotlin [17] interfaces support default method
implementation, so Java 8 [18] interfaces do. This is a
useful feature for generic programming. For instance, one

interface Equatable<T> {
fun equal (other: T) : Boolean
fun notEqual(other: T): Boolean
{ return !this.equal(other) }}

class Ident (name : String) : Equatable<Ident> {
val idname = name.toUpperCase()
override fun equal (other: Ident) : Boolean
{ return idname == other.idname }}

Fig. 4. Interfaces and constraints in Kotlin

shared interface Comparable<Other> of Other
given Other satisfies Comparable<Other> {

shared formal Integer compareTo(Other other);
shared Integer reverseCompareTo(Other other) {

return other.compareTo(this); } }

Fig. 5. The use of “self type” in Ceylon interfaces

struct Point { x: i32, y: i32, }
...
impl Point {
fn moveOn(&self, dx: i32, dy: i32) -> Point
{ Point {x: self.x + dx, y: self.y + dy } }}

...
impl Point {
fn reflect(&self) -> Point
{ Point {x: -self.x, y: -self.y} }}

...
let p1 = Point {x: 4, y: 3};
let p2 = p1.moveOn(1, 1); let p3 = p1.reflect();

Fig. 6. Point struct and its methods in Rust

can define an interface for equality that provides a default
implementation for inequality operation. Fig. 4 demonstrates
corresponding Kotlin definitions: the Ident class implements
the interface Equatable<Ident> that has two methods, equal
and notEqual; as long as notEqual has a default implemen-
tation in the interface, there is no need to implement it in the
Ident class. In addition to default method implementations,
the Ceylon language also allows to declare a type parameter
as a self type. An example is shown in Fig. 5. In the definition
of the Comparable<Other> interface the declaration of Other

explicitly requires Other to be a self type of the interface,
i. e. a type that implements this interface. Because of this
the reverseCompareTo method can be defined: the other and
this values have the type Other, with the Other implementing
Comparable<Other>, so the call other.compareTo(this) is
perfectly legal.

2) Scala Traits: Similarly to advanced interfaces in Java 8,
Ceylon, and Kotlin, Scala traits [5, 19] support default method
implementations. They can also have abstract type members,
which, in particular, can be used as associated types [20].
Just as in C#/Java/Ceylon/Kotlin, type parameters (and ab-
stract types) in Scala can be constrained with traits and
supertypes (upper bounds): the latter constraints are called
subtype constraints. But, moreover, they can be constrained
with subtypes (lower bounds), which is called supertype con-
straints respectively. None of the languages we discussed so
far support supertype constraints nor associated types. Another
important Scala feature, implicits [19], will be mentioned later
in Sec. IV-A with respect to the Concept design pattern.

11 of 251



trait Eqtbl { fn equal(&self, that: &Self) -> bool;
fn not_equal(&self, that: &Self) -> bool
{ !self.equal(that) }}

trait Printable { fn print(&self); }
...
impl Eqtbl for i32 {
fn equal (&self, that: &i32) -> bool { *self == *that }}

...
struct Pair<S, T>{ fst: S, snd: T }
...
impl <S : Eqtbl, T : Eqtbl> Eqtbl for Pair<S, T> {

fn equal (&self, that: &Pair<S, T>) -> bool
{self.fst.equal(&that.fst) && self.snd.equal(&that.snd)}}

Fig. 7. An example of using Rust traits

3) Rust Traits: Rust language [21] quite differs from other
object-oriented languages. There is no traditional class con-
struct in Rust, but instead it suggests structs that store the data,
and separate method implementations for structs. An example
is shown in Fig. 62: two impl Point blocks define method
implementations for the Point struct. If a function takes the
&self3 argument (as moveOn), it is treated as a method. There
can be any number of implementation blocks, yet they can
be defined at any point after the struct declaration (even in a
different module). This gives a huge advantage with respect to
generic programming: any struct can be retroactively adapted
to satisfy constraints.

Constraints in Rust are expressed using traits. A trait defines
which methods have to be implemented by a type similarly
to Scala traits, Java 8 interfaces, and others. Traits can have
default method implementations and associated types; besides
that, a self type of the trait is directly available and can be used
in method definitions. Fig. 74 demonstrates an example: the
Eqtbl trait defining equality and inequality operations. Note
how support for self type solves the binary method problem
(here equal is a binary method): there is no need in extra type
parameter that “pretends” to be a self type, because the self
type Self is already available.

Method implementations in Rust can be probably thought
of similarly to .NET “extension methods”. But in contrast to
.NET5, types in Rust also can retroactively implement traits
in impl blocks as shown in Fig. 7: Eqtbl is implemented by
i32 and Pair<S, T>. The latter definition also demonstrates
a so-called type-conditional implementation: pairs are equality
comparable only if their elements are equality comparable. The
constraint <S : Eqtbl... is a shorthand, it can be declared in
a where section as well.

There is no struct inheritance and subtype polymorphism in
Rust. Nevertheless, as long as traits can be used not only as
constraints but also as types, a dynamic dispatch is provided
through a feature called trait objects. Suppose i32 and f64

2Some details were omitted for simplicity. To make the code correct, one
has to add #[derive(Debug,Copy,Clone)] before the Point definition.

3The “&” symbol means that an argument is passed by reference.
4Some details were omitted for simplicity. The following declaration is to

be provided to make the code correct: #[derive(Copy, Clone)] before the
definition struct Pair<S : Copy, T : Copy>. Yet the type parameters of
the impl for pair must be constrained with Copy+Equatable.

5Similarly to .NET, Kotlin supports extending classes with methods and
properties, but interface implementation in extensions is not allowed.

protocol Equatable { func equal(that: Self) -> Bool; }
extension Equatable { func notEqual(that: Self) -> Bool

{ return !self.equal(that) }}
func contains<T : Equatable>
(values: [T], x:T) -> Bool { ... }

protocol Printable { func print(); }
extension Int : Printable { ... }

protocol Container { associatedtype ItemTy ... }
func allItemsMatch<C1: Container, C2: Container
where C1.ItemTy == C2.ItemTy, C1.ItemTy: Equatable> ...

Fig. 8. Protocols and their use in Swift

implement the Printable trait from Fig. 7. Then the following
code demonstrates creating and use of a polymorphic collec-
tion (the type of the polyVec elements is a reference type):
let pr1 = 3; let pr2 = 4.5; let pr3 = -10;
let polyVec: Vec<&Printable> = vec![&pr1, &pr2, &pr3];
for v in polyVec { v.print(); }

4) Swift Protocols: Swift is a more conventional OO lan-
guage than Rust: it has classes, inheritance, and subtype
polymorphism. Classes can be extended with new methods
using extensions that are quite similar to Rust method im-
plementations. Instead of interfaces and traits Swift provides
protocols. They cannot be generic but support associated types
and same-type constraints, default method implementations
through protocol extensions, and explicit access to the self
type; due to the mechanism of extensions, types can retroac-
tively adopt protocols. Fig. 8 illustrates some examples: the
Equatable protocol extended with a default implementation
for notEqual (pay attention to the use of the Self type); the
contains<T> generic function with a protocol constraint on the
type parameter T; an extension of the type Int that enables
its conformance to the Printable protocol; the Container

protocol with the associated type ItemTy; the allItemsMatch

generic function with the same-type constraint on types of
elements of two containers, C1 and C2.

B. Languages with “Constraints-are-Not-Types” Philosophy
Most of the languages in this category were to some extent

inspired by the design of Haskell type classes [22]. For
defining constraints these languages suggest new language
constructs, which are usually second-class citizens6. These
constructs have no self types and cannot be used as types,
they describe requirements on type parameters in external way;
therefore, retroactive constraints satisfaction (retroactive mod-
eling) is automatically provided. Besides retroactive modeling,
an integral advantage of such kind of constructs is that multi-
type constraints can be easily and naturally expressed using
them; yet there is no semantic ambiguity which arises when
the same construct, such as C# interface, is used both as a
type and constraint, as in the example below:
void Sort<T>(ICollection<T>) where T : IComparable<T>;

Here ICollection<T> and IComparable<T> are generic inter-
faces, but the former is used as a type whereas the latter is
used as constraint.

6Second-class citizens cannot be assigned to variables, passed as arguments,
returned from functions.

12 of 251



interface EQ { boolean eq(This that);
boolean notEq(This that); }

abstract implementation EQ [EQ] {
boolean notEq(This that) { return !this.eq(that); }}

boolean contains<X>(List<X> list, X x)
where X implements EQ { ... }

abstract class Expr {...} class IntLit extends Expr {...}
class PlusExpr extends Expr { Expr left; Expr right; ... }
...
implementation EQ [Expr] {
boolean eq(Expr that) { return false; }}

implementation EQ [PlusExpr]{boolean eq(PlusExpr that){...}}

interface UNIFY [Tm, Eqtn, Subst] {
receiver Tm { IEnumerable<Tm> Subterms(); ... }
receiver Eqtn { IEnumerable<Eqtn> Split(); ... }
receiver Subst { Tm SubstituteTm(Tm); ... }}

Subst Unify<Tm, Eqtn, Subst>(Enumerable<Eqtn>)
where [Tm, Eqtn, Subst] implements UNIFY {...}

Fig. 9. Generalized interfaces in JavaGI

1) JavaGI Generalized Interfaces: JavaGI [6] generalized
interfaces represent a kind of confluence of both “constraints-
are-types” and “constraints-are-not-types” philosophies. Such
interfaces as PrettyPrintable defined below are called
single-parameter interfaces. They describe an interface of a
single type and can be used both as types and constraints.
interface PrettyPrintable { String prettyPrint(); }

Such interfaces have explicit access to the self type named
This; an example is shown in Fig. 9, where the self type is
used in the interface EQ. There is no direct support for default
method implementations in JavaGI, but abstract implementa-
tion definitions can be used for this purpose7. For example,
the notEq method of EQ (Fig. 9) is implemented in such a
way. Generalized interfaces can be implemented retroactively
in implementation blocks. They do not support associated
types but can be generic; moreover, implementations can be
generic as well, and support for type-conditional interface
implementation is provided:
implementation<S, T> EQ [Pair<S, T>] where S implements EQ

where T implements EQ { ... }

Besides single-parameter interfaces, there are multi-headed
generalized interfaces that adopt several features from Haskell
type classes [23] and describe interfaces of several types.
There is no self type in a multi-headed interface; therefore,
it cannot be used as a type, it is designed to be used as
a constraint only. An example of multi-headed interface is
shown in Fig. 9: the UNIFY interface contains all the functions
required by the unification algorithm considered earlier; the
requirements on three types (term, equation, substitution) are
defined at once in a single interface. Note how succinct is this
definition as compared with the one in Fig. 2.

2) Language G and C++ concepts: Concept as an explicit
language construct for defining constraints on type parameters
was initially introduced in 2003 [24]. Several designs have

7The design of JavaGI we discuss here goes back to 2011 when default
method implementations were not supported in Java. With Java 8 this task
could probably be solved in a more elegant way.

concept InputIterator<Iter> { type value; ... }
concept Monoid<T> { fun identity_elt() -> T;

fun binary_op(T, T) -> T; };

model Monoid<int>
{ fun identity_elt() -> int@ { return 0; } ... };

fun accumulate<Iter> where { InputIterator<Iter>,
Monoid<InputIterator<Iter>.value> }

(Iter first, Iter last) -> InputIterator<Iter>.value
{ let init = identity_elt(); ... }

Fig. 10. Concepts and their use in G

been developed since that time [25–27]; in the large, the
expressive power of concepts is rather close the Haskell
type classes [3]. Concepts were to solve the problems of
unconstrained C++ templates [14, 28]; they were expected
to be included in C++0x standard, but this did not happen.
A new version of concepts, Concepts Lite (C++1z) [29], is
under way now. The language G declared as “a language for
generic programming” [7] also provides concepts that are very
similar to the C++0x concepts. G is a subset of C++ extended
with several constructs for generic programming. For “C++

concepts” we use the G syntax in this paper.
Similarly to a type class, a concept defines a set of require-

ments on one or more type parameters. It can contain function
signatures that may be accompanied with default implementa-
tions, associated types, nested concept-requirements on asso-
ciated types, and same-type constraints. A concept can refine
one or more concepts, it means that refining concept includes
all the requirements from the refined concepts. Refinement is
very similar to multiple interface inheritance in C# or protocol
inheritance in Swift. Due to the concept refinement, a so-called
concept-based overloading is supported: one can define several
versions of an algorithm/class that have different constraints,
and then at compile time the most specialized version is chosen
for the given instance. The C++ advance algorithm for iterators
is a classic example of concept-based overloading application.

It is said that a type (or a set of types) satisfies a concept
if an appropriate model of the concept is defined for this type
(types). Model definitions are independent from type defini-
tions, so the modeling relation is established retroactively;
models can be generic and type-conditional. Fig. 10 illustrates
some examples: the InputIterator<Iter> concept with the
associated type of elements value; the Monoid<T> concept
and its model for the type int; the accumulate<Iter> generic
function with two constraints, on the type of an iterator and on
the associated type of this iterator. Note how identity_elt

is called in accumulate: in contrast to the languages from the
previous section, identity_elt is available in the body of
accumulate at the top-level; this may lead to some inconve-
nience even if the autocomplete feature is supported in IDE.

3) C# with concepts: In the C#cpt project [8] (C# with
concepts) concept mechanism integrates with subtyping: type
parameters and associated types can be constrained with super-
types (as in basic C#) and also with subtypes (as in Scala). In
contrast to all of the languages we discussed earlier, C#cpt al-
lows multiple models of a concept in the same scope. Some ex-

13 of 251



concept CEquatable[T] { bool Equal(T x, T y);
bool NotEqual(T x, T y) { return !Equal(x, y); }}

interface ISet<T> where CEquatible[T] { ... }

model default StringEqCaseS for CEquatable[String] { ... }
model StringEqCaseIS for CEquatable[String] { ... }

bool Contains<T>(IEnumerable<T> values, T x)
where CEquatable[T] using CEq {... if (cEq.Equal(...) ...}

Fig. 11. Concepts and models in C#cpt

constraint Eq[T] { boolean T.equals(T other); }
constraint GraphLike[V, E] { V E.source(); ... }

interface Set[T where Eq[T]] { ... }

model CIEq for Eq[String] { ... } // case-insensitive model

model DualGraph[V,E] for GraphLike[V,E]
where GraphLike[V,E] g

{ V E.source() { return this.(g.sink)(); } ... }

Fig. 12. Constraints and models in Genus

amples are shown in Fig. 11: the CEquatable[T] concept with
the Equal signature and a default implementation of NotEqual,
the generic interface ISet<T> with concept-requirement on the
type parameter T, and two models of CEquatable[] for the
type String — for case-sensitive and case-insensitive equality
comparison. The first model is marked as a default model8: it
means that this model is used if a model is not specified at
the point of instantiation. For instance, in the following code
StringEqCaseS is used to test strings equality in s1.

ISet<String> s1 = ...;
ISet<String>[using StringEqCaseIS] s2 = ...;
s1 = s2; // Static ERROR, s1 and s2 have different types

Note that s1 and s2 have different types because they use
different models of CEquatible[String]. This property is
called “constraints-compatibility” in [8], but we will refer to
it as “models-consistency”. One more interesting thing about
C#cpt: concept-requirements can be named. In the Contains<T>

function (Fig. 11) the name cEq is given to the requirement on
T; this name is used later in the body of Contains<T> to access
the Equal function of the concept. It is also worth mention that
the interface IEnumerable<T> is used as a type along with the
concept CEquatable[T] being used as a constraint; thus, the
role of interfaces is not ambiguous any more, interfaces and
concepts are independently used for different purposes.

4) Constraints in Genus: Like G concepts and Haskell type
classes, constraints in Genus [9] (an extension for Java) are
used as constraints only. Fig. 12 demonstrates some examples:
the Eq[T] constraint, which is used to constrain the T in
the Set[T] interface; the model of Eq[String] for case-
insensitive equality comparison; the multi-parameter constraint
GraphLike[V, E], and the type-conditional generic model
DualGraph[V,E]. Methods in Genus classes/interfaces can
impose additional constraints:

8The default model can be generated automatically for a type if the type
conforms to a concept, i. e. it provides methods required by the concept.

interface List[E] { boolean remove(E e) where Eq[E]; ... }

Here the List[] interface can be instantiated by any type,
but the remove method can be used only if the type E of
elements satisfies the Eq[E] constraint. This feature is called
model genericity.

Just as C#cpt, Genus supports multiple models and automatic
generation of the natural model, which is the same thing as
the default model in C#cpt. Due to this, the following code
causes a static type error (we saw the same example in C#cpt):
Set[String] s1 = ...;
Set[String with CIEq] s2 = ...;
s1 = s2; // Static ERROR, s1 and s2 have different types

In Genus this feature is called model-dependent types. An
important note is to be made here: in contrast to true dependent
types that depend on values, model-dependent types depend
on models, which are compile-time artefacts. So the model-
dependent types are just as dependent as generic types are
type-dependent types.

As well as concept-requirements in C#cpt, constraint-
requirements in Genus can be named; the example is shown
in Fig. 12: g is a name of the GraphLike[V,E] constraint
required by the DualGraph[V,E] model. Because function
signatures inside constraints are declared with an explicit
receiver type (in a style close to JavaGI), such as the type
T in the Eq[T] constraint, syntax of calls to functions in the
case of named models is _.(g.sink)(), not g.sink(_).

C. Which Philosophy Is Better If Any?

It is time to find out which approach is better. Taking into
consideration what we explored in Sec. III-A and Sec. III-B,
we draw a conclusion that there are only two language features
that cannot be incorporated in a language together:

1) the use of a construct both as a type and constraint;
2) natural support for multi-type constraints.

Languages with “constraints-are-types” philosophy support the
first feature but not the second, languages with “constraints-
are-Not-types” philosophy vice versa9. Can we determine one
feature that is more important?

It was shown in the study [30] that in practice interfaces
that are used as constraints (such as IComparable<T> in C#
or Comparable<X> in Java) are almost never used as types:

9JavaGI seems to support both of them, but it actually provides different
constructs for different purposes: single-parameter interfaces are more like
Rust traits or Swift protocols, whereas multi-headed interfaces are similar to
concepts and type classes; the latter cannot be used as types.

14 of 251



authors had checked about 14 millions lines of Java code
and found only one such example, and, furthermore, it was
rewritten and eliminated. It is also mentioned in [30] that the
same observation holds for the code in Ceylon.

It is hard to imagine any useful “constraint-and-type” ex-
ample besides the IPrintable interface from Fig. 1. In those
rare cases when this could happen, it is possible to provide
a lightweight language mechanism for automatic generation
of one construct from another. For example, single-parameter
Genus constraints with some restrictions could be translated
to Java interfaces, with the other direction being easier.
At the same time, multi-type constraints, which can be so
naturally expressed under the “constraints-are-Not-types” ap-
proach, have rather awkward and cumbersome representation
in the “constraints-are-types” approach. All other language
facilities we discussed could be supported under any approach.
Therefore, we claim that the “constraints-are-Not-types” ap-
proach is preferable. An additional benefit is that it eliminates
the ambiguity in semantics of the interface-like constructs.

IV. SINGLE MODEL VERSUS MULTIPLE MODELS

For simplicity, in this part of the paper we call “constraint”
any language construct that is used to describe constraints,
while a way in which types satisfy the constraints we call
“model”. We have seen in the previous section that most of the
languages allow to have only one, unique model of a constraint
for the given set of types; only C#cpt [8] and Genus [9]
support multiple models10. And indeed this makes sense for
the languages with “constraints-are-types” philosophy, because
it is not clear what to do with types that could implement
interfaces (or any other similar constructs) in several ways.
But how does this affect generic programming?

It turns out that sometimes it is desirable to have multiple
models of a constraint for the same set of types. The example
of string sets with case-sensitive and case-insensitive equalities
we saw earlier is one of such examples; another one is the use
of different orderings, yet different graph implementations, and
so on. Thus, in respect of generic programming, the absence
of multiple models is rather a problem than a benefit. Without
extending the language the problem of multiple models can
be solved in two ways:

1) Using the Adapter pattern. If one wants the type
Foo to implement IComparable<Foo> in a different
way, an adapter of Foo, the Foo1 that implements
IComparable<Foo1> can be created. This adapter then
can be used instead of Foo whenever the Foo1-style
comparison is required. An obvious shortcoming of this
approach is the need to repeatedly wrap and unwrap Foo

values; in addition, a code becomes cumbersome.
2) Using the Concept pattern, which is considered

in Sec. IV-A.
Both approaches have serious drawbacks. Moreover, as we
have discovered in Sec. III-C, languages with the “constraints-
are-types” philosophy are in the large less expressive than ones

10G [7] allows multiple models only in different lexical scopes.

// F-bounded polymorphism
interface IComparable<T> { int CompareTo(T other); }
void Sort<T>(T[] values) where T : IComparable<T> { ... }
class SortedSet<T> where T : IComparable<T> { ... }

// Concept Pattern
interface IComparer<T> { int Compare(T x, T y); }
void Sort<T>(T[] values, IComparer<T> cmp) { ... }
class SortedSet<T> { private IComparer<T> cmp; ...
public SortedSet(IComparer<T> cmp) { ... } ... }

Fig. 13. The use of the Concept design pattern in C#

with the “constraints-are-Not-types” philosophy. But may such
languages as C#cpt and Genus, which are in the “constraints-
are-Not-types” category and support multiple models at the
language level, be considered as the best languages for generic
programming, or we can imagine a language with a better
design? And one more question: if language support for
multiple models is a good idea, then why does not Haskell [23]
allow multiple instances of a type class? After all, it is con-
sidered to be one of the most expressive languages for generic
programming. We answer the latter question in Sec. IV-B and
discuss the former one in Sec. IV-C.

A. Concept Pattern

The Concept design pattern is suitable for programming
languages with the “constraints-are-types” philosophy. It elim-
inates two problems:

1) Firts, it enables retroactive modeling of constraints,
which is not supported in such languages as C#, Java,
Ceylon, Kotlin, or Scala.

2) Second, it allows to define multiple models of a con-
straint for the same set of types.

The idea of the Concept pattern is as follows: instead of
constraining type parameters, generic functions and classes
take extra arguments that provide a required functionality —
“concepts”. Fig. 13 shows an example: in the case of the
Concept pattern the F-constraint T : IComparable<T> is re-
placed with an extra argument of the type IComparer<T>. The
IComparer<T> interface represents a concept of comparing: it
describes the interface of an object that can compare values
of the type T. As long as one can define several classes
implementing the same interface, different “models” of the
IComparer<T> “concept” can be passed into Sort<T> and
SortedSet<T>.

This pattern is widely used in generic libraries of such
mainstream object-oriented languages as C# and Java; it is also
used in Scala. Due to implicits [5, 19], the use of the Concept
pattern in Scala is a bit easier: in most cases an appropriate
“model” can be found by a compiler implicitly, so there is
no need to explicitly pass it at a call site11. Nevertheless, the
pattern has two substantial drawbacks. First of all, it brings
run-time overhead, because every object of a generic class
with constraints has at least one extra field for the “concept”,
while generic functions with constraints take at least one

11 Scala is often blamed for its complex rules of implicits resolution:
sometimes it is not clear which implicit object is to be used.

15 of 251



extra argument. The second drawback, which we call models-
inconsistency, is less obvious but may lead to very subtle
errors. Suppose we have s1 of the type HashSet<String>

and s2 of the same type, provided that s1 uses case-sensitive
equality comparison, s2 — the case-insensitive one. Thus, s1
and s2 use different, inconsistent models of comparison. Now
consider the following function:
static HashSet<T> GetUnion<T>(HashSet<T> a, HashSet<T> b)
{ var us = new HashSet<T>(a, a.Comparer);

us.UnionWith(b); return us; }

Unexpectedly, the result of GetUnion(s1, s2) could differ
from the result of GetUnion(s2, s1). Despite the fact that
s1 and s2 have the same type, they use different comparers,
so the result depends on which comparer was chosen to build
the union. Recall that in C#cpt and Genus models are part
of the types; therefore, the similar situation causes a static
type error. But in the case of the Concept pattern models-
consistency cannot be checked at compile time.

B. Instance Uniqueness in Haskell

Type classes in Haskell [22] provide a support for ad
hoc polymorphism (function overloading). Like concepts and
constraints, they define functions available for some types. For
instance, a type class for equality comparison is defined as
follows:
class Eq a where (==) :: a -> a -> Bool

(/=) :: a -> a -> Bool
x /= y = not (x == y)

It contains a function signature for equality operator ==, and
provides a default implementation for inequality operator /=.
Then instances (models) of this type class can be defined for
types. For example, an instance for Int, a type-conditional
instance for lists, and so on.
instance Eq Int where ... -- (==) implementation
instance Eq a => Eq [a] where ... -- (==) implementation

As long as type classes support ad hoc polymorphism, they
are “globally transparent”. If a function is a part of some type
class, every time the name of this function is used a compiler
knows that an instance of the corresponding type class must be
provided. And there is a strong reason why multiple instances
of a type class for the same set of types are not allowed in
Haskell: it is type inference. Consider the following function
definition:
foo xs ys = if xs == ys then xs else xs ++ ys

In Haskell such definition is valid and its type can be inferred.
It is Eq a => [a] -> [a] -> [a]12. Inference succeeds, be-
cause a compiler knows the following facts: as long as (++)

has the type [a] -> [a] -> [a], xs and ys are lists; there is
an instance of Eq for lists (Eq a => Eq [a]). If there were no
Eq [a] instance available, type checking would fail.

Now suppose that multiple instances of a type class are
allowed. What to do with type inference of the foo in this
case? To check whether there is at least one instance Eq [a]?
And what if we also have the following code:

12[a] is a type of generic list, it is a notation for Data.List a

class Eq a => Baz a where
bar :: a -> Int

useBar x y = if length x > length y then bar x - bar y
else bar y - bar x

If instances are uniquely defined, type checker just checks if
there is an instance Eq [a] that implies Baz [a] (x and y

are inferred to be lists because length has the type [a] ->

Int). But if there are multiple Eq [a] instances, then every
Baz [a] instance must specify which Eq [a] instance it uses.
It can even be the case that there is a Baz [a] instance for
one Eq [a], but not for another one. Therefore, at the point of
the useBar definition a compiler has no idea whether there is
an error of missed instance or not, because it knows nothing
about the instances that might be used in a call to useBar.
This information is available only at the point of a call.

Note that even with the OverlappingInstances extension for
Haskell, multiple models in a sense we discuss in the paper
are not supported. This extension indeed allows to have several
instances that match the constraints deduced for a code. But
there must be only one instance among them that compiler
can select unambiguously (according to some rules) at the
point of a code definition. Again, not at the call site — at
the point of definition. Thus, a user of the code still cannot
choose between instances, an instance is already selected
by a compiler. Thus, Haskell sacrifices language support for
multiple models for the sake of type inference. It is a strong
argument for Haskell users, but in the case of the most object-
oriented programming languages, which usually do not allow
to omit type annotations of function arguments as well as
constraints on type parameters, there is no need to prohibit
multiple models in OO languages.

C. Parameters versus Predicates

So far we have discovered that languages with “constraints-
are-Not-types” philosophy, if they also allow to define multiple
models, may potentially provide better support for generic
programming compared to other languages. We have seen only
two languages with such properties, C#cpt [8] and Genus [9],
and there is an essential shortcoming in the design of both
of them: constraints on type parameters are declared in
“predicate-style” rather than “parameter-style”. For example,
consider the following Genus definition [9]:
Map[V,W] SSSP[V,E,W](V s)
where GraphLike[V,E], Weighted[E,W],

OrdRing[W], Hashable[V] { ... }

SSSP[V,E,W] is a function for Dijkstras single-source shortest-
path algorithm, with the GraphLike[V,E], Weighted[E,W],
OrdRing[W] and Hashable[V] being constraints on type pa-
rameters. The constraints look as if they were predicates
on types, and if they were predicates, this function would
probably be well-designed. For example, in Haskell, G, C#,
Java, Rust, and many other languages, where only one model
of a constraint is allowed for the given set of types, constraints
on type parameters are indeed predicates: types either satisfy
the constraint (if they have a model that is unique) or not. But
in Genus and C#cpt constraints are not predicates, they are

16 of 251



actually parameters, as long as different models of constraints
can be used. In the worst case a call to SSSP[V,E,W] would
be as follows:
...pathFromX = SSSP[MyVert, MyEdge, Double

with MyGrLike with MyEdgeDW
with DescDOR with MyVerHash](x);

Whereas in the best case:
...pathFromX = SSSP[MyVert, MyEdge, Double](x);

Note that edge and weight types cannot be deduced, because
they are determined by models of the constraints, not by the
vertex x itself. It is easy to imagine that models of edge
weighing and its ordered ring would often vary, so a call to
SSSP[V,E,W] is likely to look like this in many cases:
...pathFromX = SSSP[MyVert, MyEdge, Double

with MyEdgeDW with DescDOR](x);

This is not very bad but is also not good enough.
If look again at the SSSP algorithm, one could notice that

it really depends on three things: a source vertex, a model of
a weighed graph which this vertex belongs to, and a model
of hashing. Furthermore, at the level of the SSSP signature the
type E of edges does not matter, we are interested in the model
of weighed graph as a whole. Taking into account this ideas,
we can rewrite the SSSP in the following way:
constraint WeighedGraph[V,E,W]
extends GraphLike[V,E], Weighted[E,W], OrdRing[W] {}

Map[V,W] SSSP[V,E,W](V s)
where WeighedGraph[V,E,W], Hashable[V] { ... }

Then a call to SSSP also becomes better:
...pathFromX = SSSP[MyVert, MyEdge, Double with MyWGr](x);

Nevertheless, we believe that in the case of multiple models
the “predicate-style” of constraints is misleading and makes it
more difficult to write and call a generic code. We suggest that
the design of constraints has to be in the “parameter-style”.
One example of such design is provided by the extension for
the OCaml language — modular implicits [31]; it is briefly
discussed in Sec. IV-C1. A sketch of the “parameter-style”
design of constraints for object-oriented languages is presented
in Sec. IV-C2.

1) Modular Implicits in OCaml: In the “modular implic-
its” extension for the OCaml language [31] module types
are used to describe constraints, modules represent models,
with generic functions explicitly taking module-parameters.
Fig. 14 demonstrates some examples. By contrast to concepts
and genus constraints, module types and modules do not
have type parameters, instead they have type members, such
as the t in the Eq module type. Eq_int and Eq_list are
models of Eq for the int and generic list. Generic functions
that need constraints, such as foo and foo’, explicitly take
implicit module parameters EL and E. Notice that just as type
parameters, EL and E are compile-time parameters, not run-
time. They are called implicit because at a call to generic
function actual models can be inferred, as in the x and y

examples in Fig. 14. Notice that in the foo function any model
of comparison of lists is expected, whereas foo’ expects a

module type Eq = sig
type t
val equal : t -> t -> bool

end

implicit module Eq_int = struct
type t = int
let equal x y = ...

end
implicit module Eq_list {E : Eq} = struct
type t = Eq.t list
let equal xs ys = ...

end

let foo {EL : Eq} xs ys = if EL.equal(xs, ys)
then xs else xs @ ys

let foo’ {E : Eq} xs ys = if (Eq_list E).equal(xs, ys)
then xs else xs @ ys

let x = foo [1;2;3] [4;5]
let y = foo’ [1;2;3] [4;5]

Fig. 14. OCaml modular implicits

concept Equality[T] { bool Equal(T x, T y);
bool NotEqual(T x, T y) { return !Equal(x, y); }}

concept Ordering[T] refines Equality[T]
{ int Compare(T x, T y); }}

interface ISet<T | Equality[T] eq> { ... }
interface ICollection<T> { ...
bool Remove<Equality[T] eq>(T x); ... }

bool Contains<T | Equality[T] eq>(IEnumerable<T> vs, T x)
{... if (eq.Equal(...) ...}

int MaxInt<|Ordering[int] ord>(IEnumerable<int> vs) {...}

Fig. 15. The use of concept-parameters in Cp#

model of comparison of elements of lists and fixes the model
Eq_list E of comparison of lists.

2) Concept Parameters for C#: Fig. 15 shows some ex-
amples of a generic code in the style of concept-parameters,
which we call Cp# — C# with concept-Parameters. Concepts
are the same as in C#cpt, whereas constraints on type param-
eters are not predicates any more, they are explicitly stated
as parameters in the angle brackets after the “|” sign. In
the ICollection<T> interface the Remove method is obviously
generic: it takes the concept-parameter eq for comparing the
values of the type T. Note that concept-parameters can even
be non-generic as in the MaxInt function.

If default models are supported, it must be possible to infer
concept-arguments just in the same way as in C# or Genus, so
that instances of generic functions and classes can be written in
a usual way, without the need to specify the models required:
var ints = new ISet<int>(...);
var has5 = Contains(ints, 5);

var maxv = MaxInt(ints);
var minv = MaxInt<|IntOrdDesc>(ints);

ISet<String> s1 = ...;
ISet<String|StringEqCaseIS> s2 = ...;
s1 = s2; // Static ERROR, s1 and s2 have different types

C#cpt and Genus can easily be redesigned to follow the
“concept-parameters style” presented here. With this style the
syntax of such languages would perfectly fit the semantics.
On the other hand, the “concept-predicates style” misleads a

17 of 251



Haskell C# Java 8 Scala Ceylon Kotlin Rust Swift JavaGI G C#cpt Genus ModImpl

Constraints can be used as types #        G# # # # #
Explicit self types − # # G#  - #   G# − − − −
Multi-type constraints  A A A # A # #      

Retroactive type extension −  # # #    # # # # −
Retroactive modeling  A A A # A        
Type conditional models  # # # # #  #      

Static methods  𝑎 #  #       𝑎  𝑎  𝑎  𝑎

Default method implementation  #       G#   # #

Associated types  # #  # #   #   #  
Constraints on associated types G# − −  − −   −   −  
Same-type constraints G# − −  − −   −   −  

Subtype constraints −      −  # #  # −
Supertype constraints − # #  # # − # # #  # −

Concept-based overloading # # # # # #  # # G#𝑑 # # #

Multiple models # A A A A A # # # G#𝑏    
Models-consistency (model-dependent types) −𝑐 # # # # # −𝑐 −𝑐 −𝑐 −𝑐    
Model genericity − A A A A A  # # # #  −

aConstraints constructs have no self types, therefore, any function member of a constraint can be treated as static function.
bG supports lexically-scoped models but not really multiple models.
cIf multiple models are not supported, the notion of model-dependent types does not make sense.
dC++0x concepts, in contrast to G concepts, provide full support for concept-based overloading.

TABLE I
THE LEVELS OF SUPPORT FOR GENERIC PROGRAMMING IN OO LANGUAGES

programmer and masks the fact that constraints can be non-
uniquely satisfied.

V. CONCLUSION AND FUTURE WORK

Table I provides a summary on comparison of the languages:
each row corresponds to one property important for generic
programming; each column shows levels of support of the
properties in one language. Black circle  indicates full
support of a property, G# — partial support, # means that
a property is not supported at language level, A means that a
property is emulated using the Concept pattern, and the “−”
sign indicates that a property is not applicable to a language.
The “ModImpl” column corresponds to the OCaml modular
implicits. All the properties that appear in rows of Table I
were discussed in Sec. III and Sec. IV. Related properties are
grouped within horizontal lines; some of them are mutually
exclusive. For example, as we saw earlier, using constraints as
types and natural language support for multi-type constraints
are mutually exclusive properties. The major features analysed
in the paper are highlighted in bold.

The purpose of this table is not to determine the best
language. The purpose is to show dependencies between
different properties and to graphically demonstrate that the
“constraints-are-Not-types” approach is more powerful than
the “constraints-are-types” one. There are some features that
can be expressed under any approach, such as static methods,
default method implementations, associated types [15], and
even type-conditional models.

It should be mentioned that the table is not exhaustive.
There is a bunch of facilities that we did not discuss at all,
although they can be considered independently of the study

we made. Thus, for example, Genus [9] provides a support
for such useful feature as multiple dynamic dispatch. Consider
the following code:
constraint Intersectable[T] { T T.intersect(T that); }
model ShapeIntersect for Intersectable[Shape]
{ Shape Shape.intersect(Shape s) {...}
// Rectangle and Circle are subclasses of Shape:
Rectangle Rectangle.intersect(Rectangle r) {...}
Shape Circle.intersect(Rectangle r) {...}
Shape Triangle.intersect(Circle c) {...} ... }

It provides a subtype polymorphism on multiple arguments. So
that in the call s1.intersect(s2) the most specific version of
intersect would be used depending on the dynamic types of
s1 and s2.

Another interesting feature is concept variance. For exam-
ple, suppose we have the following Cp# definitions:
concept Equality[T] { bool Equal(T x, T y);
bool NotEqual(T x, T y) { return !Equal(x, y); }}

concept Ordering[T] refines Equality[T]
{ int Compare(T x, T y); }}

interface ISet<T | Equality[T] eq> { ... }

If ISet<T|eq> is covariant on the eq in a sense of the re-
finement relation, then the class SortedSet<T | Ordering[T]

ord> can legally implement ISet<T|ord>. Now recall the
ICollection<T> interface definition:
interface ICollection<T> { ...
bool Remove<Equality[T] eq>(T x); ... }

SortedSet<T|ord> obviously also implements the interface
ICollection<T>. Should it be the case that the ord model of
Equality[T] required in the Remove method be used in place
of eq? Or the Remove method has to remain model-generic?

18 of 251



There are other questions similar to mentioned above that
relate constraints on type parameters to usual features of
object-oriented programming. Some of these questions require
a careful type-theoretical investigation, so this is the subject
for future work.

ACKNOWLEDGMENT

The author would like to thank Artem Pelenitsyn, Jeremy
Siek, and Ross Tate for helpful discussions on generic pro-
gramming.

REFERENCES
[1] Musser D. R. and Stepanov A. A. Generic Programming, Proceedings of the

International Symposium ISSAC’88 on Symbolic and Algebraic Computation,
ISAAC ’88, London, UK, UK: Springer-Verlag, 1989, pp. 13–25.

[2] Garcia R. et al. An Extended Comparative Study of Language Support for Generic
Programming, J. Funct. Program., Mar. 2007, vol. 17, no. 2, pp. 145–205.

[3] Bernardy J.-P. et al. A Comparison of C++ Concepts and Haskell Type Classes,
Proceedings of the ACM SIGPLAN Workshop on Generic Programming, WGP
’08, Victoria, BC, Canada: ACM, 2008, pp. 37–48.

[4] Garcia R. et al. A Comparative Study of Language Support for Generic Program-
ming, SIGPLAN Not., Oct. 2003, vol. 38, no. 11, pp. 115–134.

[5] Oliveira B. c. d. s. and Gibbons J. Scala for Generic Programmers: Comparing
Haskell and Scala Support for Generic Programming, J. Funct. Program., July
2010, vol. 20, no. 3-4, pp. 303–352.

[6] Wehr S. and Thiemann P. JavaGI: The Interaction of Type Classes with Interfaces
and Inheritance, ACM Trans. Program. Lang. Syst., July 2011, vol. 33, no. 4,
12:1–12:83.

[7] Siek J. G. and Lumsdaine A. A Language for Generic Programming in the Large,
Sci. Comput. Program., May 2011, vol. 76, no. 5, pp. 423–465.

[8] Belyakova J. and Mikhalkovich S. Pitfalls of C# Generics and Their Solution
Using Concepts, Proceedings of the Institute for System Programming, June 2015,
vol. 27, no. 3, pp. 29–45.

[9] Zhang Y. et al. Lightweight, Flexible Object-oriented Generics, Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2015, Portland, OR, USA: ACM, 2015, pp. 436–445.

[10] Martelli A. and Montanari U. An Efficient Unification Algorithm, ACM Trans.
Program. Lang. Syst., Apr. 1982, vol. 4, no. 2, pp. 258–282.

[11] Canning P. et al. F-bounded Polymorphism for Object-oriented Programming,
Proceedings of the Fourth International Conference on Functional Programming
Languages and Computer Architecture, FPCA ’89, Imperial College, London,
United Kingdom: ACM, 1989, pp. 273–280.

[12] Bruce K. et al. On Binary Methods, Theor. Pract. Object Syst., Dec. 1995, vol.
1, no. 3, pp. 221–242.

[13] Kennedy A. and Syme D. Design and Implementation of Generics for the .NET
Common Language Runtime, SIGPLAN Not., May 2001, vol. 36, no. 5, pp. 1–12.

[14] Belyakova J. and Mikhalkovich S. A Support for Generic Programming in
the Modern Object-Oriented Languages. Part 1. An Analysis of the Problems,
Transactions of Scientific School of I.B. Simonenko. Issue 2, 2015, no. 2, 63–77
(in Russian).

[15] Järvi J., Willcock J., and Lumsdaine A. Associated Types and Constraint
Propagation for Mainstream Object-oriented Generics, Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’05, San Diego, CA, USA: ACM, 2005,
pp. 1–19.

[16] The Ceylon Language Specification, version 1.2.2 (March 11, 2016).
[17] The Kotlin Reference, version 1.0 (February 11, 2016).
[18] Java Platform, Standard Edition (Java SE) 8.
[19] Oliveira B. C., Moors A., and Odersky M. Type Classes As Objects and

Implicits, Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’10, Reno/Tahoe,
Nevada, USA: ACM, 2010, pp. 341–360.

[20] Pelenitsyn A. Associated Types and Constraint Propagation for Generic Program-
ming in Scala, English, Programming and Computer Software, 2015, vol. 41, no.
4, pp. 224–230.

[21] The Rust Reference, version 1.7.0 (March 3, 2016).
[22] Hall C. V. et al. Type Classes in Haskell, ACM Trans. Program. Lang. Syst., Mar.

1996, vol. 18, no. 2, pp. 109–138.
[23] Wadler P. and Blott S. How to Make Ad-hoc Polymorphism Less Ad Hoc,

Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’89, Austin, Texas, USA: ACM, 1989,
pp. 60–76.

[24] Stroustrup B. Concept Checking — A More Abstract Complement to Type
Checking, Technical Report N1510=03-0093, ISO/IEC JTC1/SC22/WG21, C++
Standards Committee Papers, Oct. 2003.

[25] Stroustrup B. and Dos Reis G. Concepts — Design Choices for Template Argu-
ment Checking, Technical Report N1522=03-0105, ISO/IEC JTC1/SC22/WG21,
C++ Standards Committee Papers, Oct. 2003.

[26] Dos Reis G. and Stroustrup B. Specifying C++ Concepts, Conference Record
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’06, Charleston, South Carolina, USA: ACM, 2006, pp. 295–
308.

[27] Stroustrup B. and Sutton A. A Concept Design for the STL, Technical Report
N3351=12-0041, ISO/IEC JTC1/SC22/WG21, C++ Standards Committee Papers,
Jan. 2012.

[28] Stepanov A. A. and Lee M. The Standard Template Library, Technical Report
95-11(R.1), HP Laboratories, Nov. 1995.

[29] Sutton A. C++ Extensions for Concepts PDTS, Technical Specification N4377,
ISO/IEC JTC1/SC22/WG21, C++ Standards Committee Papers, Feb. 2015.

[30] Greenman B., Muehlboeck F., and Tate R. Getting F-bounded Polymorphism into
Shape, Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom:
ACM, 2014, pp. 89–99.

[31] White L., Bour F., and Yallop J. Modular Implicits, ArXiv e-prints, Dec. 2015,
arXiv: 1512.01895 [cs.PL].

19 of 251

http://arxiv.org/abs/1512.01895

	01_title.pdf
	02_annotation.pdf
	03_content.pdf
	04_foreword.pdf
	05_committee.pdf
	06_submissions.pdf
	01_SYRCoSE_2016_paper_53.pdf
	Introduction
	Main ideas
	Two approaches to constraining type parameters
	Languages with ``Constraints-are-Types'' Philosophy
	Interfaces in Ceylon and Kotlin
	Scala Traits
	Rust Traits
	Swift Protocols

	Languages with ``Constraints-are-Not-Types'' Philosophy
	JavaGI Generalized Interfaces
	Language G and C++ concepts
	C# with concepts
	Constraints in Genus

	Which Philosophy Is Better If Any?

	Single Model versus Multiple Models
	Concept Pattern
	Instance Uniqueness in Haskell
	Parameters versus Predicates
	Modular Implicits in OCaml
	Concept Parameters for C#


	Conclusion and Future Work

	02_SYRCoSE_2016_paper_16.pdf
	03_SYRCoSE_2016_paper_54.pdf
	04_SYRCoSE_2016_paper_14_short.pdf
	05_SYRCoSE_2016_paper_34.pdf
	06_SYRCoSE_2016_paper_51.pdf
	07_SYRCoSE_2016_paper_43.pdf
	Introduction
	Domain analysis approaches
	Proposed approach
	Evaluation
	Conclusion
	References

	08_SYRCoSE_2016_paper_5.pdf
	09_SYRCoSE_2016_paper_52.pdf
	10_SYRCoSE_2016_paper_48.pdf
	I. Introduction
	II. common view on stand-alone verification of microprocessor caches
	III. Test stimuli generation
	A. The general approach
	B. Generation of primary requests for caches with out-of-order execution

	IV. Correctness checking
	A. Checking of indeterministic caches
	1) “Gray box” method: one of the ways to solve aforementioned problem is to replace usual “black box” method of device verification. That is, we should not consider only external interfaces of the device while analysing its behaviour. To determine which variant of behaviour has happened in the cache one could use “hints” from the implementation. To use this approach, a set of internal interfaces and signals is defined and its behaviour is specified. This interfaces must be chosen in a way that information on their state could be used to eliminate indeterminism. In general, in caches such signals are results of primary request arbitration and interfaces of finite automata of cache eviction mechanism. Additionally, that information can be used in request generator and for the estimation of verification quality. This method is usually easy to implement. Drawbacks of this methods are additional requirements for specification and reliance on interfaces that could also exhibit erroneous behaviour.
	2) Dynamic refinement of behavioural model: Another approach is to create additional instances of model for each variant of behaviour in case of nondeterministic choice in the device[4]. Each reaction is checked against every spawned device model. If reaction is impossible for one variation of behaviour, then it is removed from set. If set of possible states after some reaction becomes empty, the system must return error. In general, this approach may cause exponential growth of number of states with each consecutive choice. But for caches this approach could be implemented efficiently, because of several properties of caches: serialization of requests and cache line independence. Information on which indeterministic choice was made in the device (for use in request generator or for verification quality estimation) could also be extracted from reactions. Strong points of that approach compared to “gray box” method is elimination of reliance on implementation details of the device. Drawback is additional complexity of implementation.
	3) Assertions: Test stimulus generators simulate the behaviour of the device under test. It also should be noted that interaction between the device and its environment must adhere to some protocol. Based on that protocol, one can include functional requirements of protocols as an assertions in the generator. Then, violation of an assertion represents signals an error. Usage of assertions is an effective method of detection of a broad class of errors. In addition to assertions that are common for all memory subsystem devices, several cache-specific assertions could be included. They represent invariants of cache coherence protocol. To check this invariants, coherence of states of a single cache line is analyzed in all parts of test system after each change.

	B. Checking caches with out-of-order execution

	V. Case study
	VI. Conclusion

	11_SYRCoSE_2016_paper_12.pdf
	12_SYRCoSE_2016_paper_4.pdf
	13_SYRCoSE_2016_paper_41.pdf
	14_SYRCoSE_2016_paper_55.pdf
	15_SYRCoSE_2016_paper_7.pdf
	I. Introduction
	II. GOST 27.310-95 summary
	III. Tools overview
	A. OSATE
	B. RAM Commander

	IV. Comparison
	V. Conclusion

	16_SYRCoSE_2016_paper_31.pdf
	17_SYRCoSE_2016_paper_24.pdf
	18_SYRCoSE_2016_paper_15.pdf
	19_SYRCoSE_2016_paper_2_short.pdf
	20_SYRCoSE_2016_paper_37_short.pdf
	21_SYRCoSE_2016_paper_27_short.pdf
	Introduction
	Motivating Example
	Axioms as Specification Drivers
	Specification Drivers in Practice
	ADT axioms
	Equivalence
	Well-definedness
	Complete contracts

	Related Work
	Proving contracts completeness
	Conclusions and further work
	References

	22_SYRCoSE_2016_paper_13.pdf
	23_SYRCoSE_2016_paper_21.pdf
	24_SYRCoSE_2016_paper_33_short.pdf
	25_SYRCoSE_2016_paper_35.pdf
	Introduction
	Preliminaries
	P/T-nets
	Classical Petri nets unfoldings
	Nested Petri nets
	Conservative NP-nets

	Translation of Safe Conservative NP-Nets into P/T-Nets 
	Unfoldings
	Branching Processes of a Conservative NP-net
	Comparing two ways of nested Petri net unfolding

	Conclusion
	References

	26_SYRCoSE_2016_paper_49.pdf
	27_SYRCoSE_2016_paper_23.pdf
	Introduction
	Motivating example
	Related work

	Preliminaries
	Approache to balance between abstraction and detalisation
	Mapping log attributes onto UML sequence diagram components
	Merge of diagram components
	Mining a hierarchical UML sequence diagram using nested fragments

	Evaluation
	VTM4Visio Framework
	Log pre-processing
	Log library
	Prototype implementation

	Conclusion

	28_SYRCoSE_2016_paper_20.pdf
	29_SYRCoSE_2016_paper_3.pdf
	30_SYRCoSE_2016_paper_25.pdf
	31_SYRCoSE_2016_paper_36.pdf
	32_SYRCoSE_2016_paper_17.pdf
	Dynamic Key and Signature Generation According to the Starting Time
	REFERENCES


	33_SYRCoSE_2016_paper_1.pdf
	34_SYRCoSE_2016_paper_6.pdf
	35_SYRCoSE_2016_paper_29.pdf
	36_SYRCoSE_2016_paper_10.pdf
	37_SYRCoSE_2016_paper_8.pdf
	I. Introduction
	II. Main Targets for Debugger
	III. Related Works
	A. Fiasco OS
	B. VxWorks
	C. L4Ka::Pistachio:

	IV. Technical Description:
	V. Debugger's Capabilities
	1. Setting Breakpoints on Kernel and Partitions.
	2. Single Step.
	3. Showing Information about Processes and Threads, Inspecting Memory, Instructions and Registers. Memory Reading and Writing.
	4. Setting Watchpoints.
	5. Stack Inspection.

	VI. Future Work
	VII. Conclusion
	References

	38_SYRCoSE_2016_paper_9.pdf




