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Abstract. It is a widely held belief that supercompilation like partial evalua-
tion is only capable of linear-time program speedups. The purpose of this paper
is to dispel this myth. We show that supercompilation is capable of superlinear
speedups and demonstrate this with several examples. We analyze the transfor-
mation and identify the most-specific generalization (msg) as the source of the
speedup. Based on our analysis, we propose a conservative extension to super-
compilation using equality indices that extends the range of msg-based superlin-
ear speedups. Among other benefits, the increased accuracy improves the time
complexity of the palindrome-suffix problem from O(2n

2

) to O(n2).
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1 Introduction

Jones et al. reported that partial evaluation can only achieve linear speedups [11, 12].
The question of whether supercompilation has the same limit remains contentious. It has
been said that supercompilation is incapable of superlinear (s.l.) speedups (e.g., [13]).

However, in this paper we report that supercompilation is capable of s.l. speedups
and demonstrate this with several examples. We analyze the transformation and identify
the most-specific generalization (msg) as the source of this optimization. Based on our
analysis, we propose a straightforward extension to supercompilation using equality in-
dices that extends the range of s.l. speedups. Among other benefits, the time complexity
of the palindrome-suffix problem is improved from O(2n

2

) to O(n2) by our extension.
Without our extension the msg-based speedup applies to few “interesting programs”.

First, let us distinguish between two definitions of supercompilation:

supercompilation = driving + folding + generalization (1)

and
supercompilation = driving + identical folding (2)
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Examples of these have been described, SCP (1) [7, 17, 27, 28, 30] and SCP (2) [4,
25]. In brief, the former use various sophisticated whistle and generalization algorithms
to terminate the transformation. In contrast, the latter only fold two configurations that
are identical modulo variable renaming (α-identical folding) [25]. This means, SCP (2)
terminate less often than do SCP (1). Nevertheless, non-trivial optimization can be
achieved by SCP (2) due to the unification-based information propagation by driving,
such as the optimization of a string matcher [4].

It was reported as proven that supercompilation, like partial evaluation, is not ca-
pable of s.l. speedups. However, that proof [23, Ch. 11] applies only to SCP (2) using
identical folding without online generalization during supercompilation [23, Ch. 3], it
does not apply to SCP (1).4 We will show that s.l. speedups require folding and most-
specific generalization.

We begin by giving an example that demonstrates that supercompilation is capable
of s.l. speedups in Section 2. In Section 3, we briefly review driving and generalization
of core supercompilation, the latter of which is the key to our main technical result. We
characterize the limits of s.l. speedup by supercompilation in Section 4. In Section 5
we present our technique using equality indices which extend the range of superlinear
speedups that a core supercompiler can achieve. Section 6 is the conclusion.

We assume that the reader is familiar with the basic notion of supercompilation (e.g.,
[4, 7, 25]) and partial evaluation (e.g., [12]). This paper follows the terminology [7]
where more details and definitions can be found.

2 A Small Example of Superlinear Speedup by Generalization

To dispel the “myth” that supercompilation is only capable of linear speedups, let us
compare supercompiler types, SCP(1) and SCP(2), using an example and analyze the
transformations with and without generalization. This is perhaps the smallest example
that demonstrates that an exponential speedup by supercompilation is possible.

The actual program transformations in this paper were performed by Simple Su-
percompiler (SPSC) [17]5, a clean implementation of a supercompiler with positive
driving and generalization. The example programs are written in the object language of
that system, a first-order functional language with normal-order reduction to weak head
normal form [7]. All functions and constructors have a fixed arity. Pattern matching is
only possible on the first argument of a function. For example, the function definition
f(S(x), y) = f(x, y) is admissible, but f(x, S(y)) = f(x, y) and f(S(x), S(y)) =
f(x, y) are not.

Example 1. Consider a function f that returns its second argument unchanged if the
first argument is the nullary constructor Z and calls itself recursively if it has the unary
constructor S as the outermost constructor. The function always returns Z as a result.
The computation of term f(x, x) in the start function p(x) takes exponential timeO(2n)
due to the nested double recursion in the definition of f (here, n = |x| is the number

4 Similar to partial evaluation, the result of a function call can be generalized by inserting let-
expressions in the source program by hand (offline generalization) [2].

5 SPSC home page http://spsc.appspot.com.

http://spsc.appspot.com
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let v1=f(v0, v0) in f(v1, v1)

vv ))
f(v0, v0) f(v1, v1)

a) Driving with most-specific generalization: exponential speedup.
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let v1=f(v0, v0) v2=f(v0, v0) in f(v1, v2)
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f(v0, v0) f(v0, v0) f(v1, v2)

��
b) Driving without most-specific generalization: linear speedup.

Fig. 1. The partial process trees of a supercompiler with and without generalization.

of S-constructors in the unary number x). The residual program f1 produced by SPSC
takes time O(n) on the same input, that is an exponential speedup is achieved.6

Source program Residual program
Start p(x) = f(x, x); Start p1(x) = f1(x);
f(Z, y) = y; f1(Z) = Z;
f(S(x), y) = f(f(x, x), f(x, x)); f1(S(x)) = f1(f1(x));

To understand what causes this optimization, compare the two process trees pro-
duced by a supercompiler with and without generalization (Fig. 1a,b). In both cases,
driving the initial term s = f(x, x) branches into two subtrees. One for x=Z and one
for x=S(v0). Driving the left subtree terminates with term Z. In the right subtree each

6 The speedup is independent of whether the programs are run in CBV, CBN or lazy semantics.
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occurrence of x in the right-hand side of f is replaced by S(v0) and driving leads to
the new term t = f(f(v0, v0), f(v0, v0)). The msg of the initial term s and the term t
captures the repeated term f(v0, v0):

bs, tc = (f(v1, v1), {v1 := x}, {v1 := f(v0, v0)}) , (3)

and leads to the creation of the generalized node in the process tree (a):

let v1=f(v0, v0) in f(v1, v1) . (4)

Both of the subterms in this node are instances of the initial term s and can be folded
back to it. Hence, the process tree is closed and driving terminates. The linear-time
residual program f1 in Example 1 is obtained from process tree (a). Each function
takes as many arguments as there are configuration variables in the corresponding con-
figuration. Now only one variable remains, and the residual function becomes unary.
It is the second rule of the msg (defined in Sect. 3) that unifies equal subterms and
introduces term sharing in the process tree. We call this mechanism msg-sharing.

This optimization cannot be achieved by an SCP (2) supercompiler using identi-
cal folding without msg. In the same situation, as shown in process tree (b), such a
supercompiler loses the connection between the two arguments in the body of the let-
expression: f(v1, v2). As a result, the original function definition is rebuilt in the resid-
ual program. In fact, without inserting let-expressions in one way or another, a super-
compiler with identical folding does not terminate because the configurations continue
to grow due to unfolding function calls. Like partial evaluation, s.l. speedup cannot be
achieved by SCP (2). That supercompilation with msg can change the asymptotic time
complexity was demonstrated above.

The speedup results from core positive supercompilation with msg [7], with no
additional transformation techniques. The speedups are achieved both in call-by-name
and call-by-value performance.

To illustrate the optimization, we compare side-by-side the runs of the source func-
tion and the residual function with unary input SSSZ (abbreviated by 3). Fig. 2 shows
the relevant normal-order reduction steps and omits some of the intermediate steps. The
reader will notice that one call f(3, 3) in the source-program run (left side) corresponds
to one call f1(3) in the residual-program run (right side), two calls f(2, 2) to one call
f1(2), and four calls of f(1, 1) to one call f1(1). In general, 2m calls f(n−m,n−m)
correspond to one call f1(n−m) where n is the number represented by the unary input
and 0 ≤ m < n. This shows that s.l. speedup relates to a variable-sized input, where
the improvement increases superlinearly as the size of the input grows.

3 The Core Supercompiler

In this section we briefly review supercompilation with generalization. Since supercom-
pilation is formally defined in the literature (e.g., [7]) we will skip the full definition here
and only review the algorithm of msg which introduces the sharing of terms.

A supercompiler takes an initial term and a program, and constructs a possibly in-
finite process tree. If the process tree is finite, a new term and a residual program are
generated. The two main components of a supercompiler for developing the process
tree are driving and generalization.
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f(SSSZ, SSSZ) f1(SSSZ)

f(SSSZ,SSSZ) → f(f(SSZ,SSZ), f(SSZ,SSZ))

��
f(f(SSZ, SSZ), f(SSZ, SSZ)) f1(SSSZ)→f1(f1(SSZ))

��

f(SSZ,SSZ) → f(f(SZ,SZ), f(SZ,SZ))

��
f(f(f(SZ, SZ), f(SZ, SZ)), f(SSZ, SSZ)) f1(f1(SSZ))

f(SZ,SZ) → f(f(Z,Z), f(Z,Z))

��
...
��

f(f(SZ, SZ), f(SSZ, SSZ)) f1(SSZ)→f1(f1(SZ))

��

f(SZ,SZ) → f(f(Z,Z), f(Z,Z))

��
...
��

f(SSZ, SSZ) f1(f1(f1(SZ)))

f(SSZ,SSZ) → f(f(SZ,SZ), f(SZ,SZ))

��
f(f(SZ, SZ), f(SZ, SZ)) f1(SZ)→f1(f1(Z))

��

f(SZ,SZ) → f(f(Z,Z), f(Z,Z))

��
...
��

f(SZ, SZ) f1(f1(f1(f1(Z))))

��

f(SZ,SZ) → f(f(Z,Z), f(Z,Z))

��
... ...

Fig. 2. Exponential- and linear-time runs of the source and residual functions of Example 1.

Driving makes use of unification-based information propagation to construct the pro-
cess tree during supercompilation. Common to all driving methods regardless of their
degree of information propagation [4] is the use of configuration variables and non-
linear configurations. These features distinguish driving from the constant-based infor-
mation propagation of partial evaluation. It is essential that configuration variables may
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occur repeatedly in a configuration. This is key to expressing term equality and sharing
results of a subcomputation as demonstrated in Example 1.

Generalization To ensure that a finite process tree is constructed from which a residual
program can be generated, supercompilation uses the most specific generalization. The
result of the msg is used to decide whether to continue driving, fold to an existing con-
figuration, or to generalize two configurations to a new one. There are various strategies
to choose which configurations the msg is applied to and how its result is used including
the use of transient configurations, upward and downward generalization. The particu-
lar strategy is irrelevant to this paper except that different strategies present more or less
sharing opportunities to the msg.

We review the definition of msg used in positive supercompilation (taken from [24]).
The msg of two terms, bs, tc, is computed by exhaustively applying the following
rewrite rules to the triple (x, {x := s}, {x := t}). The result is the msg (tg, θ1, θ2)
including a generalized term tg and two substitutions θ1 and θ2 such that tgθ1 = s and
tgθ2 = t. Any two terms s and t have an msg which is unique up to renaming. tg

{x := σ(s1, . . . , sn)} ∪ θ1
{x := σ(t1, . . . , tn)} ∪ θ2

 →

 tg{x := σ(y1, . . . , yn)}
{y1 := s1, . . . , yn := sn} ∪ θ1
{y1 := t1, . . . , yn := tn} ∪ θ2


 tg
{x := s, y := s} ∪ θ1
{x := t, y := t} ∪ θ2

 →

 tg{x := y}
{y := s} ∪ θ1
{y := t} ∪ θ2


Take for example the msg of the two configurations in Eq. 3 of Example 1. It iden-

tified the term-equality pattern in terms and led to the sharing by a let-expression.
An important property is that msg-based generalization is semantics preserving. The

branches merged in the process tree are identical. No computation is deleted, and only
the result of a computation is shared by a let-expression. The term equality expressed
by a let-expression, e.g. let v1=f(v0, v0) in f(v1, v1).

The sharing that supercompilation introduces may look like common subexpression
elimination, but it is a dynamic property that occurs only during driving as the following
example illustrates.

Example 2. Consider a variant of Example 1 where the right-hand side of function g
contains the permuted terms f(x, y) and f(y, x). As before, given the initial configura-
tion f(x, x), the supercompiler achieves an exponential speedup. The term equality is
discovered by the msg because the configuration variables are propagated during driv-
ing. Common subexpression elimination will not discover this equality.

Source program Residual program
Start p(x) = f(x, x); Start p1(x) = f1(x);
f(Z, y) = y; f1(Z) = Z;
f(S(x), y) = g(y, x); f1(S(x)) = f1(f1(x));
g(Z, y) = y;
g(S(x), y) = f(f(x, y), f(y, x));
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4 Limitations of Sharing by Supercompilation

We identified the msg as the mechanism that introduces sharing of equal terms. We
demonstrated that s.l. speedups are possible by supercompilation contradicting a com-
mon belief, but found few “interesting problems” to which this applies. For example,
why does supercompilation not improve the well-known naive, exponential-time Fi-
bonacci function? Some of the limitations that we identified are due to the strategy of
developing process trees, e.g. identical configurations are not shared across subtrees.
Other limitations are due to the unselective application of the msg to configurations,
which leads to a loss of term equalities in the process tree. In this section, we examine
two important limitations of core supercompilation. For the latter, we propose a more
accurate technique of equality indices in the following section.

Limitation 1: No sharing across subtrees The speedups described so far are due to the
sharing of computations. Core supercompilation does not identify all equal subterms in
a single term (unlike the general form of jungle driving [21]). The msg identifies equal
subterms when comparing two configurations, each of which contains equal subterms
in the same positions. Thus, after a configuration is decomposed into subterms, e.g. by
a let-expression, equal subterms are no longer identifiable as equal by the msg. The
msg works locally on two given configurations in the process tree. Therefore, well-
known examples with obvious opportunities for sharing cannot be improved by msg-
sharing. They require a different supercompilation strategy for building process trees.
This includes the naive Fibonacci function which requires the sharing of equal terms
across subtrees. Let us illustrate this limitation.

Example 3. Consider the naive Fibonacci function:

f(Z) = S(Z);
f(S(x)) = ff (x);
ff (Z) = S(Z);
ff (S(x)) = add(f(x), f(S(x))).

There are several repeated terms in the process tree of the naive Fibonacci function
(Fig. 3), but they occur in separate subtrees. For example, the terms ff (v2) as well as
ff (v3). The msg alone cannot find equal nodes across different subtrees. To share such
terms requires another strategy of building process trees in the supercompiler. Clearly,
msg-sharing cannot speed up the naive Fibonacci function, which is a limitation of the
supercompilation strategy of building process trees.

Limitation 2: Unselective generalization Two configurations with the same pattern
of equal subterms are more likely to appear when a generalization in a branch of the
process tree with certain contractions of the variables is considered than when a general-
ization with the initial configuration is done. But in that case, the general configuration
which is a parent of the more specific configuration may be generalized with this con-
figuration resulting in the loss of the subterm equalities. This limitation of the strategy
of applying msg-sharing can be avoided by a more accurate generalization as we will
show in the next section. Let us illustrate this problem.
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x=Z

f(x)

x=S(v0)��

S(Z)
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x=Z

ff (v0)

v0=S(v1)

��
let z1=f(v1) z2=f(S(v1))

in add(z1, z2)
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v1=Z

f(v1)
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f(S(v1))
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ff (v2)
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let z3=f(v3) z4=f(S(v3))
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v2=S(v3)

let z5=f(v2) z6=f(S(v2))
in add(z5, z6)

%%��yy
f(S(v2))

��
ff (v2)

Fig. 3. A fragment of the process trees of the naive Fibonacci function.

Example 4. We replace the initial configuration of Example 1 by p(x, y) = f(x, y).
Given the process tree for p(x, y), the configurations f(x, y) and f(f(x, x), f(x, x))
are generalized to f(x, y). After such a generalization, no speedup can be achieved
by sharing. The residual program replicates the source program and no speedup is
achieved. However, the second argument of the initial configuration is significant only
for the first evaluation of f(x, y). In all following evaluation steps, the initial value of
y does not occur, and all calls of f have equal first and second arguments. The lesson
learned from this example is that term equalities should be preserved in configurations.
We shall use this observation as the basis for our extension.

Source program Residual program
Start p(x, y) = f(x, y); Start p(x, y) = f1(x, y);
f(Z, y) = y; f1(Z, y) = y;
f(S(x), y) = f(f(x, x), f(x, x)); f1(S(x), y) = f1(f1(x, x), f1(x, x));

5 Increasing the Accuracy of Sharing: Equality Indices

Based on our analysis above, namely the generalization of term equalities in Example 4,
we propose a new, conservative extension to supercompilation that makes the applica-
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tion of the msg more accurate. We propose equality indices to reduces the loss of term
equalities. Our goal is not to change the definition of the msg or the driving strategy, but
to exploit the msg such that more term equalities can be preserved. We want residual
programs to contain as many shared function calls as possible. A technique that assists
in this task must distinguish function calls that have different term-equality patterns.
Also, the technique must be applicable after each driving step during supercompilation
because term equalities in configurations are a dynamic property (cf. Example 2).

5.1 How it Works

We examined several examples that show there are more chances for a deep optimiza-
tion by preserving the term equalities uncovered dynamically during driving. It is more
likely that this can be exploited by supercompiling a call with term equalities, e.g.
f(t, t), than a call without such equalities, e.g. f(s, t) where s 6= t. We have seen
in Example 4 that the loss of these equalities during msg limits the overall optimization
by the supercompiler. Example 1 showed that in the residual program the arity of f(t, t)
is reduced to f1(t) provided a process graph can be built preserving this equality.

Our goal is to increase the accuracy of sharing by distinguishing calls that contain
different patterns of syntactic term equalities. Our approach has two components. The
annotation of all calls with equality indices, and the synchronization of annotated terms
after driving and before calculating the msg.

First, let us annotate all function names in a configuration with equality indices.
For example, the two calls from above are annotated as f[1](t, t) and f[2](s, t). Equality
indices are textual representations of equality patterns, which can be seen with function
calls represented by directed acyclic graphs (dag):

f

t

f

s t

The msg will treat function names with different equality indices as different functions,
thereby avoiding the loss of subterm equalities. The form and calculation of the indices,
also for the nested case, will be treated in more detail below. For now let it suffice to
say that they textually represent different sharing patterns (subterm equalities in calls).

The second issue that we need to approach is that driving can obscure term equali-
ties. For example, driving the following nested call in Example 4 forces the unfolding of
the first argument (underlined) and a substitution on the second argument (underlined).
This yields in one step a configuration where the term equality disappears (the pattern
matching on the first argument in a function definition forces the first argument to be
unfolded, but not the second argument).

f(f(x, x), f(x, x)) ≡ f(t, t)

↓ driving with x = S(v1)

f(f(f(v1, v1), f(v1, v1)), f(S(v1), S(v1))) ≡ f(t′, t′′), t′ 6= t′′
(5)
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Even though both arguments are identical before driving, this is obscured by unfolding
the first one and substituting S(v1) into the second one. In fact, both arguments should
be driven at the same time (in lockstep) to preserve the synchronization!

The new configuration should be as follows.

f(f(f(v1, v1), f(v1, v1)), f(f(v1, v1), f(v1, v1))) ≡ f(t′, t′) (6)

There are various ways to drive two (or more) terms in lockstep. Our solution is simpler
and does not require an extension of the driving strategy. We restore (“synchronize”) the
argument equality after the driving step using the equality indices. This simple syntactic
technique will be made more precise below, also for multiple arguments.

For our extension we need two small algorithms:

1. Annotate every call in a configuration with an equality index, e.g. f(t, t) ind→ f[1](t, t).
2. Synchronize all arguments in a driven configuration using the equality indices, e.g.

f[1](f[1](t, t), S(t))
sync→ f[1](f[1](t, t), f[1](t, t)) .

The two operations will be performed after driving and before applying the msg:

driven configuration→ (1) index→ (2) synchronize→ msg→ drive (7)

A node in the process tree will from then on contain a term annotated with equality
indices, tInd. This amplifies the power of the msg-based sharing mechanism that is
present in core supercompilation, and does not require a fundamental change of super-
compilation. It is not difficult to add this refinement to an existing system.

5.2 The Equality-Index Algorithm

We now present the technique in more detail. First, for each function call we find the
arguments which are equal, and identify them by marking each function name with an
equality index. Driving itself ignores the indexes, whereas the msg treats function names
with different indices differently. The equality indexes are used after each driving step
to restore argument equalities. The two algorithms, indexing and synchronization, are
applied after each driving step and before the whistle and msg algorithms are applied.

An equality index lists for each argument in a function call the smallest number
of the argument to which it is syntactically equal, in particular its own number if all
arguments to its left are different. For brevity, the equality index for the first argument
is omitted as it is always equal to 1.

For example, a call f(x, x, z) is marked with the equality index [1, 3], which means
that the second argument x is equal to the first argument x, and the third argument z is
not equal to an argument to its left. Not all index combinations are possible, e.g. no call
can be marked by [1, 2]. A call f(t1, . . . , tn) in which all arguments differ has the index
[2, . . . , n] and a call f(t, . . . , t) with identical arguments has the index [1, . . . , 1].

Given a node in the process tree of a program and the driven configuration t in the
node, we apply the following two algorithms to update the configuration.

First, we construct an annotated version of the configuration, which differs from the
plain configuration only by function call indexes.
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Tree representation of
f(f(v0, v0), f(v0, v0))
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f(f(v0, v0), f(v0, v0))
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f(f(v0, v0), f(v0, v0))
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f f

x x f y

x x

f

f f

x ∗+3 f y

x ∗+3

f

f f

x f y

x
Tree representation of
f(f(x, x), f(f(x, x), y))

Reference representation of
f(f(x, x), f(f(x, x), y))

Simple dag representation of
f(f(x, x), f(f(x, x), y))

Fig. 4. Tree representations of terms vs. simple dag representations. A double arrow in the refer-
ence representation indicates the equality of arguments in a function call.

Algorithm 1 (Assigning equality indexes) 1. Given a configuration t, choose the in-
nermost, leftmost function call in t that is not annotated. Let that call be f(t1, . . . , tn).
(a) Assign auxiliary values i = 2, j = 1, Γ = [] (the empty list).
(b) If ti = tj (syntactically), append [j] to Γ , increase i, and set j = 1. Otherwise,

increase j and repeat step (b). When j reaches i, ti = tj is always true. So the
number of steps in (b) is finite.

(c) When i reaches n + 1, rename this call of f in t to fΓ . Then mark it as an
annotated call and proceed with step (1).

Γ is the equality index. The length of the list is equal to the arity of the indexed
function minus 1. This index shows which arguments of the call repeat each other. The
equality index makes function calls with different argument equalities differ from each
other, which preserves the equalities during the msg.

We illustrate how the Algorithm 1 works on term f(f(v0, v0), f(v0, v0)). The in-
nermost, leftmost function call is f(v0, v0), which is the first argument of the outer
call. Step (a) assigns i = 2, j = 1, Γ = []. Step (b) checks whether t1 = t2
(the two arguments of the call f ). Because v0 = v0, we get Γ = [1] and change
i to 3. Step (c) applies and the call is renamed to f[1](v0, v0). The term becomes
f(f[1](v0, v0), f(v0, v0)). The three steps are repeated with the second call f(v0, v0)
and the next term is f(f[1](v0, v0), f[1](v0, v0)). Finally, after repeating the steps with
the outermost call, the final term is f[1](f[1](v0, v0), f[1](v0, v0)). The indices in this
term identify for each argument the leftmost identical argument (Fig. 5, left tree).

All functions have a fixed arity, so for each function the set of possible equality
indices is finite. The annotation of a binary function can lead to at most two different
functions. A ternary function has at most five different equality indices and a function
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f[1]

f[1] f[1]+3

v0 v0+3 v0 v0+3

f[1]

f[1] f[1]+3+3

f[1] f[1]+3 S(v1) S(v1)+3

v1 v1+3 v1 v1+3

Tree term tInd before driving:
f[1](f[1](v0, v0), f[1](v0, v0))

Tree term t′Ind to be synchronized after driving:
f[1](f[1](f[1](v1, v1), f[1](v1, v1)), f[1](S(v1), S(v1)))

Fig. 5. Equality indexes identify the leftmost identical argument in a function call before driving,
and are used to restore the lost argument equalities after driving (bold double arrow, right tree).

with four arguments has at most 15 different equality indices (and it is rare that all 15
arrangements appear during the supercompilation of the same program). Usually, the
same function has only a few different equality indices.

The second algorithm restores obscured argument equalities using equality indexes.

Algorithm 2 (Synchronization) 1. Given an indexed term tInd, choose the inner-
most, leftmost unsynchronized function call. Let that call be f[k2,...,kn](t1, . . . , tn)
and set j = 2.

2. If kj = 1, replace the kj-th argument by the first argument. Otherwise, do nothing.
Then, in both cases, increase j by 1.

3. When j = n+1, proceed with step (1) because the synchronization of function call
f[k2,...,kn](t1, . . . , tn) is finished. Otherwise, proceed with step (2).

For example, given the term f[1](f[1](v0, v0), S(v1)), the innermost unsynchronized
call is f[1](v0, v0). Since the equality index contains 1 at the first position, we perform
the replacement and obtain the unchanged call f[1](v0, v0). Next, the innermost unsyn-
chronized call is the outermost call f[1](. . .). Again, we replace the second argument by
the first one. The synchronized term becomes f[1](f[1](v0, v0), f[1](v0, v0)).

Given calls f(t1, . . . , tn) and f(s1, . . . , sn). If ∀i, j . ti = tj ⇔ si = sj then the
equality indices for f(t1, . . . , tn) and f(s1, . . . , sn) are identical. Hence, if the msg
treats function names with different equality indices as different functions, it will never
generalize two equal arguments of a call to two unequal terms.

Correctness Why does the synchronization not change semantics of the computation?
The answer is that an argument can be copied in the call iff on some step of the com-
putation it is syntactically identical to the other argument. If the call whose argument
is copied retains its equality index, and the arguments of the call lose their syntactic
equality, it means that the call itself was not driven itself — only its first argument.
The source language guarantees that the driven argument is always the first argument
— and the first argument is never changed by the synchronization. So, when the term
is synchronized, its arguments are replaced only by semantically equal arguments that
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f[2](x, y)

x=Z

uu
x=S(v0)��

y f[1](f[1](v0, v0), f[1](v0, v0))

v0=Z

uu
v0=S(v1)

++
f[1](Z,Z)

��

f[1](f[1](f[1](v1, v1), f[1](v1, v1)), f[1](v1, v1), f[1](v1, v1)))

Z

Fig. 6. Unfolding the process tree with equality indices of Example 4.

f[2](x, y)

x=Z

uu
x=S(v0)��

y f[1](f[1](v0, v0), f[1](v0, v0))

v0=Z

uu
v0=S(v1)

++
f[1](Z,Z)

��

let z=f[1](v1, v1) in f[1](f[1](z, z), f[1](z, z))

ss ��
Z f[1](v1, v1)

v1=Z

uu
v1=S(v2)��

f[1](f[1](z, z), f[1](z, z))

Z f[1](f[1](v2, v2), f[1](v2, v2))

Fig. 7. The closed process tree with equality indices of Example 4.

came through more driving steps. Thus, the termination property of the program is pre-
served.7

Example 5. After introduction of the equality indexes, the process tree of Example 4 is
constructed as follows. The first call f(x, y) is annotated by equality index [2] because
its two arguments are syntactically different.

Under the assumption that x = S(v0), driving yields the next configuration

f(f(v0, v0), f(v0, v0)) . (8)

First, the two innermost calls f(v0, v0) are annotated by equality index [1] (which
means that the second argument is equal to the first). Then the outermost function call

7 The source language plays a key role in this reasoning. If the language admits patterns with
static constructors also in other argument positions, Algorithm 2 must be changed. We must
not only copy the first argument, but any argument in which the actual driving step was done.
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is also annotated by equality index [1] (its two arguments are equal). We obtain the
indexed configuration (Fig. 5, left tree)

f[1](f[1](v0, v0), f[1](v0, v0)) . (9)

Although driving this configuration unfolds the call of f in the first argument of the
outermost call and substitutes into the second argument due to assumption v0 = S(v1),

f[1](f(f(v1, v1), f(v1, v1)), f[1](S(v1), S(v1))) , (10)

by which the two arguments become different, the configuration is synchronized to

f[1](f[1](f[1](v1, v1), f(v1, v1)), f[1](f[1](v1, v1), f(v1, v1))) (11)

because the equality index [1] of the outermost call of f is unchanged by the driving step
(Fig. 5, right tree) and the synchronization algorithm restores the lost syntactic equality
of the two arguments (Fig. 5, bold double arrow, right tree). The assumption v0 =
S(v1), which was used for the substitution into the second argument, remains in the
process tree (Fig. 6). Thus, no important driving information is lost by synchronization.

After the last step of driving, the msg of the two configurations (9) and (11),

bf[1](f[1](v0, v0), f[1](v0, v0)),
f[1](f[1](f[1](v1, v1), f[1](v1, v1)), f[1](f[1](v1, v1), f[1](v1, v1)))c
= (f[1](f[1](z, z), f[1](z, z)), θ1, θ2) ,

(12)

leads to the creation of the following generalization node in the process tree (Fig. 7):

let z=f[1](v1, v1) in f[1](f[1](z, z), f[1](z, z)) . (13)

Finally, after driving f[1](v1, v1) in (13), we obtain the closed process tree in Fig. 7.
A linear-time residual program is generated from this tree (shown below). An exponen-
tial speedup is achieved by supercompilation with equality indices, which was not pos-
sible in Example 4 without the generalization precision induced by the equality indices.

Source program Residual program
Start p(x, y) = f(x, y); Start p(x, y) = f2(x, y);
f(Z, y) = y; f2(Z, y) = y;
f(S(x), y) = f(f(x, x), f(x, x)); f2(S(x), y) = ff (x);

ff (Z) = Z;
ff (S(x)) = ff (f1(x));
f1(Z) = Z;
f1(S(x)) = ff (x);

In the residual program, the initial function f2 has the general form, and functions
ff and f1 are generated as a specialization of f having two equal arguments.

We conclude that the equality indices algorithm makes more calls with identical
arguments appear in the process tree. This method increases the precision of general-
ization without changing the driving and msg algorithms of the core supercompiler, but
it is not powerful enough to handle old problems such as optimization of the naive Fi-
bonacci function (Sect. 4). Equality indices do not give references to equal terms other
than those local in the arguments of a function call, but they are an effective mechanism
to preserve important argument equalities in a core supercompiler.
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5.3 More Examples of the Equality-Index Algorithm

By using the equality indexes algorithm, we can achieve a superlinear speedup as per
the following example.

Example 6. The palindrome-suffix program returns a suffix of either x or y that is a
palindrome. If x = A(A(A(B(Z)))) and y = A(B(A(B(Z)))) then the program
returns B(A(B(Z))). The program has run time O(2n

2

) where n = |x| + |y|, that is
the number of A- and B-constructors in x and y. Supercompilation without equality
indices does not build a superlinear speedup of the program.

Source program
Start: p(x, y) = f(x, y); pal(A(z)) = and(palA(z, Z()), pal(z));
f(x, y) = g(pal(x), pal(y), x, y); pal(B(z)) = and(palB(z, Z()), pal(z));
g(T, z, x, y) = gt(z, x, y); palA(A(x), y) = palA(x,A(Z));
gt(T, x, y) = x; palA(B(x), y) = palA(x,B(Z));
gt(F, x, y) = fmin1(y, y); palA(Z(), y) = ifA(y);
gf (T, x, y) = y; palB(A(x), y) = palB(x,A(Z));
gf (F, x, y) = f(fmin1(x, x), fmin1(y, y)); palB(B(x), y) = palB(x,B(Z));
fmin1(A(x), y) = fmin2(y, x); palB(Z(), y) = ifB(y);
fmin1(B(x), y) = fmin2(y, x); ifA(A(x)) = T ;
fmin2(A(y), x) = f(x, y); ifA(B(x)) = F ;
fmin2(B(y), x) = f(x, y); ifA(Z()) = F ;
and(T, x) = x; ifB(B(x)) = T ;
and(F, x) = F ; ifB(A(x)) = F ;

ifB(Z()) = F ;

Function fmin1 that removes the first letter from the list always has equal argu-
ments. However, equality is lost because the function call f(x, x) after execution of
fmin1 is generalized with f(x, y) which has unequal arguments.

Consider the fragment of the process tree in Fig. 8. The call of f[1] with two equal
arguments is generalized only with another call of f[1] with two equal arguments. Thus,
the functions are transformed to functions with fewer arguments, and an unary version
of f is generated. The residual program with the residual version of fmin2 calling the
unary version of f , and the unary version of f calling the binary version of g has run
time O(n2) where n = |x|.

Example 7. Now consider a negative example where the equality indexes do not help.
Let us drive the naive Fibonacci function (Example 3) from an initial configuration
f(x0). When the common order of driving is used by choosing the leftmost redex, re-
peated function calls are never observed in any configuration. To reveal the repeated
calls inherent in the Fibonacci function the following strategy of supercompilation
should be used.8 After each contraction of a configuration variable and making a step of
the redex, consider all function calls in the current configuration and make all steps that

8 To the best of the authors’ knowledge, it has not been implemented in any supercompiler.
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fmin2[2](A(x), x)

��
f[1](x, x)

��
let v0 = pal(x) in g[1,3,3](v0, v0, x, x)

uu ++
pal(x)

��

g[1,3,3](v0, v0, x, x)

v0=T

ss
v0=F��

gt [2,2](T, x, x)

��

gf [2,2](F, x, x)

��
x f[1](fmin1[1](x, x), fmin1[1](x, x))

Fig. 8. A fragment of the updated process tree of Example 6.

become possible after substitution of the contraction, namely “normalize” the configu-
ration. Then the repeated call ff (x3) is found at the fifth step along the following path:

f(x0)
x0 = S(x1) −→ ff (x1)
x1 = S(x2) −→ add(f(x2), f(S(x2))

−→ add(f(x2),ff (x2))
x2 = S(x3) −→ add(ff (x3), add(f(x3), f(S(x3)))

−→ add(ff (x3), add(f(x3),ff (x3)))

(14)

The equality indexes do not capture the repeated call ff (x3) as it occurs as argu-
ments of two different calls to add . Moreover, with the common termination strategy
based on homeomorphic embedding, this configuration is not reached since the whistle
blows earlier and premature generalization is performed. Hence, to superlinearly speed-
up definitions, such as the Fibonacci example a new termination strategy is needed that
enables performance of more driving steps before generalization.

5.4 Discussion

The two parts of our method can be considered separately.
Equality indexes and their treatment as function names can be used to construct

a whistle that is more precise than the homeomorphic embedding relation used in the
standard generalization algorithm [24]. It may be combined together with known re-
finements of the homeomorphic embedding relation, e.g. [20], forcing the relation to
distinguish between strict and non-strict substitutions. In simple cases like Example 4,
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using the strict embedding alone can also avoid the problem of unselective generaliza-
tion. In case of comparing other configuration, e.g. f(x, y) and f(g(x, x, y), g(x, x, y)),
none of the refined embedding relations (E∗, Evar , E+) [20] can steer clear of the un-
selective generalization. Equality indices help to avoid the loss of sharing in this case.

Synchronization preserves term equalities including any syntactically lost due to
standard driving. The synchronization feature can be viewed as a very simple version
of jungle driving [21] that treats equal terms as one, but due to its simplicity and textual
representation, our approach does not require a change of driving.

Partial deduction and driving are transformation techniques that achieve their trans-
formational effects by nonlinear configurations [6]. Thus, our method may be not only
useful in supercompilation, but in the context of verification by abstraction-based partial
deduction [5] and other advanced program transformers [3].

6 Conclusion

We demonstrated how core supercompilation as it was originally defined by Valentin
Turchin and used in many works, is capable of achieving superlinear (up to exponential)
speedups on certain programs that repeatedly evaluate some function calls with the
same arguments. Although core supercompilation does not check for repeated subterms
in configurations explicitly (although it could), it contains an operation that captures
equal terms implicitly: most specific generalization.

We described two types of supercompilation: SCP (2) using identical folding with-
out online generalization, and SCP (1) with more sophisticated folding and generaliza-
tion strategies. Identical folding limits SCP (2) to linear speedups similar to the limit
of partial evaluation, but performs deeper transformations than partial evaluation due
to the unification-based information propagation of driving (e.g., SCP (2) passes the
KMP-test [4, 25] which partial evaluation does not [12]).

Folding is a powerful technique which in combination with other transformation
techniques can perform deep program optimizations (e.g., improve the naive Fibonacci
function [1]). The limitation of SCP (2) lies only in the restriction to identical fold-
ing, not in driving. We showed that even a core supercompiler using driving and most-
specific generalization could change the asymptotic time complexity of programs, and
dispelled the myth that supercompilation is only capable of linear-time program speedups.

A possible reason for the persistence of this myth is that it is sometimes forgotten
that generalization without checking the equality of subterms, e.g. the generalization of
f(g(x), g(x)) and f(h(a, b), h(a, b)) to f(x, y), is not most specific. The most specific
in this case being the generalization to f(x, x) with two substitutions {x := g(x)} and
{x := h(a, b)}. When these substitutions are residualized as assignments, they evaluate
the terms g(x) and h(a, b) only once. We refer to this phenomenon as msg-sharing.

Several methods more powerful than core supercompilation have been proposed
that achieve superlinear speedup: distillation [10], various forms of higher-level super-
compilation [9, 17], including old ideas of walk grammars by Valentin Turchin [26, 29]
which are grounds for further exploration.

Nevertheless, gradual extensions of core supercompilation (which may be termed
first-level supercompilation as they mainly operate on configurations rather than graphs,
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walk grammars, etc.) are also possible. Here are some ideas which have been investi-
gated or proposed, some of which have been supercompilation folklore for decades:

– Look for repeated subterms in each configuration and restructure the configuration
into a let-term if found.

– Collapsed jungle driving [21, 22] generalizes the previous idea and formalizes it
in terms of dag representation of configurations and operation of collapsing that
merges topmost nodes of equal subgraphs.

– Various techniques simpler than dags, which achieve the same effects, but on fewer
programs, can be added to existing supercompilers. We demonstrated one such
method consisting of the addition of equality indices and the synchronization of
terms after driving (Section 5). This method captures repeated subterms occurring
in the list of the arguments of the same function call. It is less powerful than the
use of dags, but it is much simpler because it deals with terms rather than dags plus
it works with the operations of driving, generalization, homeomorphic embedding,
whistles, and preserves termination proofs, while the respective operations on dags
and the proofs are to be developed afresh.

Future work In preparing this paper the authors found the topic of capturing repeated
function calls in first-level supercompilation was undeveloped deserving more atten-
tion. Possibly, the only systematic study in the context of supercompilation is [22].
The topic should be revisited in the context of modern research in supercompilation.
Another avenue to explore is “old chestnut” problems including the naive Fibonacci
function, the sum of factorials, etc. Solutions of their superlinear speedup by extended
core supercompilation should be presented and used as test cases to develop algorithmic
supercompilation strategies that reveal repeated subterms. One of the intriguing ques-
tions is the role of multi-result supercompilation [8, 14, 15, 18, 19] in these solutions,
and what can be done in the single-result case. First-level methods should be compared
with higher-level ones such as distillation, and their relative power and inherent limits
should be studied.
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