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Both equality saturation and supercompilation are methods of program trans-
formation. The idea of equality saturation [2] is to infer new equalities about pro-
gram functions from the initial ones (function definitions). These new equalities
can then be used to various ends: a new program may be extracted from these
equalities by choosing a representative set of equalities which will constitute the
new program’s definitions, or properties of the original program may be proved
by looking at the set of inferred equalities. Previously we have shown that equal-
ity saturation is applicable to functional languages by using transformations (in-
ference rules) borrowed from supercompilation (driving, more precisely), more
specifically we used it for the problem of proving equalities [1].

The idea of supercompilation [3] is to build a process tree representing all
possible paths of program execution and then transform it into a finite graph
which can be easily turned into a new program. Building a process tree is done
by using a combination of driving, generalization and folding.

A question might be asked: what is the relationship between equality satura-
tion and supercompilation? Can’t they be represented as special cases of some-
thing more general? Turns out that they can be (more or less): supercompilation
can be seen as the very same equality inference process that underlies equality
saturation, the only difference being that in supercompilation this inference is
strictly guided by heuristics, whereas in equality saturation transformations are
applied simply in breadth-first order. Indeed, a process tree can be represented
as a set of equalities between configurations, and process tree building operations
just infer new equalities.

Let’s consider a simple example of supercompilation in equality inference
style. We will use only equalities of the form f(x1, ..., xn) = E (i.e. function
definitions). Equalities of more general form E1 = E2 can be represented as mul-
tiple equalities of the aforementioned form by introducing auxiliary functions.
This representation is actually asymptotically more efficient when we have many
equalities.
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Consider the following function definitions:

(1) add(x, y) = case x of {Z → y;S(x′) → sadd(x′, y)}
(2) sadd(x, y) = S(add(x, y))

(3) f(x, y, z) = add(add(x, y), z)

This is a classic addition associativity example. We will supercompile the func-
tion f to get a more optimal definition of the three-number sum function. f may
be considered as the root node of our process tree with the right hand side of (3)
being its configuration. Rules of supercompilation prescribe performing driving
first, which in this case is just unfolding of the add function using its definition
(1):

(4) f(x, y, z) = case add(x, y) of {Z → z;S(x′) → sadd(x′, z)}

To continue driving we should unfold add in the scrutinee position using (1) and
lift the inner case-of up which is done in one inference step:

(5) f(x, y, z) = case x of {Z → f1(y, z);S(x′) → f2(x′, y, z)}
(6) f1(y, z) = case y of {Z → z;S(y′) → sadd(y′, z)}
(7) f2(x′, y, z) = case sadd(x′, y) of {Z → z;S(x′′) → sadd(x′′, z)}

(Auxiliary functions f1 and f2 were introduced to split up the complex right hand
side of (5)). Now (5) has the form of variable analysis, which means that we are
done with f and can move on to the branches f1 and f2. f1 is not interesting
and driving it won’t actually add new equalities, so let’s consider only f2. In (7)
we should unfold sadd using (2) and reduce the case-of using the appropriate
branch (again, one inference step):

(8) f2(x′, y, z) = sadd(add(x′, y), z)

Unfolding of sadd leads to

(9) f2(x′, y, z) = S(f3(x′, y, z))

(10) f3(x′, y, z) = add(add(x′, y), z)

But the right hand side of (10) is the same as the right hand side of (3) (which is
a configuration seen earlier), so we should perform folding. In equality saturation
setting this is done by removing (10) and replacing f3 with f in every definition.
Here (9) is the only one we need to modify:

(9′) f2(x′, y, z) = S(f(x′, y, z))

To get a residual program we should traverse the definitions from f choosing
one definition for each function. Actually supercompilation requires us to choose
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the last ones (i.e. for f we take (5), not (4) or (3)):

(5) f(x, y, z) = case x of {Z → f1(y, z);S(x′) → f2(x′, y, z)}
(9′) f2(x′, y, z) = S(f(x′, y, z))

(6) f1(y, z) = case y of {Z → z;S(y′) → sadd(y′, z)}
(2) sadd(x, y) = S(add(x, y))

(1) add(x, y) = case x of {Z → y;S(x′) → sadd(x′, y)}

This example shows that performing supercompilation as process of equality
inference is possible in principle.

Equality saturation is guaranteed to eventually perform the same steps as
supercompilation since it works in breadth-first manner. This actually makes
equality saturation more powerful in theory. Indeed, it already subsumes multi-
result supercompilation since it doesn’t restrict application of different transfor-
mations to either driving or generalization. If we add merging by bisimulation,
which is essentially checking equivalence of two expression by residualizing them,
then we also get higher-level supercompilation. However, this power comes at a
price: without heuristic guidance we risk to be hit by combinatorial explosion.
And this actually happens in reality: our experimental prover was unable to
pass the KMP-test because of this, and what is worse, generalizing rules had to
be disabled which left our prover only with the simplest form of generalization,
namely removal of the outermost function call. That’s why it would be inter-
esting to make a hybrid between supercompilation and pure equality saturation
that would restrict transformation application, but not too much.

Currently our equality saturating prover has an experimental mode that per-
forms driving up to certain depth before performing ordinary equality satura-
tion. It allows our prover to pass the KMP-test as well as a couple of similar
examples, but results in regression on some other examples. Although this mode
shows that such a combination is possible, it is far from a fully fledged super-
compilation/equality saturation hybrid since it lacks most of supercompilation
heuristics and works in a sequential way (first driving, and only then breath-first
saturation). Therefore, two directions of future research may be named here:

– Developing heuristics to control generalization. Using generalizing transfor-
mations without restriction leads to combinatorial explosion. Direct appli-
cation of mgu from supercompilation doesn’t seem to be a good solution
because there may be too many pairs of terms due to multiresultness.

– Developing heuristics to control overall rewriting, mainly depth of driving. In
supercompilation whistles are used for this purpose, but traditional home-
omorphic embedding whistles are also hard to implement in multi-result
setting of equality saturation.

Since the main difficulty in using traditional heuristics seems to be with multi-
result nature of equality saturation, it is entirely possible that completely new
methods should be developed.
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