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Abstract. Program veri�cation is a well known potential application of
supercompilation. There are, however, few examples of using supercom-
pilation for practical veri�cation problems. We consider the correctness
proof of the supercompiler itself as an interesting and practical task, on
which to test the potential of supercompilation in this area. We show
that even a simple supercompiler � treating a small �rst-order subset
of Lisp, and working in cooperation with a traditional proof assistant
(J-Bob) � can provide a lot of help for checking its own correctness.

1 Introduction

Supercompilation is a program transformation technique � a particularly strong
form of partial evaluation [4,8] � originally proposed by Turchin [24], with a long
history [12] and many potential applications: program optimization, software
testing, program analysis, formal veri�cation. While many of these applications
were already described by Turchin in his early works, most of the research on
supercompilation has concentrated for many years on program optimization. In
recent years researchers show renewed interest in other applications, including
analysis and veri�cation of programs and other systems [11, 13, 18, 19]. A good
way to increase the adoption of supercompilation for veri�cation is to demon-
strate it is applicable and helpful for a wider range of practical problems. By
analogy with self-application of supercompilers (and partial evaluators in gen-
eral) � which has been a hot research topic for many years [4, 20] � we consider
veri�cation of the supercompiler itself to be an interesting task. A challenge in
the context of veri�cation is how to trust the results of a supercompiler, espe-
cially if it is being used for its own veri�cation. A good solution to this problem
has recently been proposed by Klyuchnikov et al. [14]: a supercompiler produc-
ing not only a transformed program, but also a certi�cate proving the result is
semantically equivalent to the input.

We take this idea a step further by showing that a supercompiler � which
is both self-applicable and certifying � can be used successfully as a proof au-
tomation tool during the creation of its own correctness proof. Note that we do
not speak of fully automatic self-veri�cation: the supercompiler automatically
generates only parts of its correctness proof. The overall proof is created manu-
ally in a traditional proof assistant. We argue that this organization is actually
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an advantage: while typically supercompilers are used as automatic black-boxes,
and if they fail to produce the desired result, their user is left with nothing, in
our approach the supercompiler can be called many times during an interactive
proof session, each time incrementally helping to get closer to the �nal goal. We
outline as particular achievements of the proposed approach the following:

� a way to construct a supercompiler, which is both self-applicable and certi-
fying (Sect. 3);

� an alternative two-phase approach to the construction of a certifying su-
percompiler: the supercompiler returns only a certi�cate, and the resulting
program can be reconstructed from this certi�cate as a second step (Sect.
3.1);

� successful application of the described supercompiler as a generic proof au-
tomation tool in the context of a traditional proof assistant (Sect. 3.1);

� successful application of the supercompiler to �ll in parts of its own correct-
ness proofs (Sect. 4.2).

In Sect. 3 we discuss the overall architecture of our supercompiler and the adap-
tations made � compared to a classical supercompiler organization � in order
to �t better as a proof automation tool inside the J-Bob proof assistant. One
important omission is the lack of folding (that is, the supercompiler cannot pro-
duce new function de�nitions). It turns out folding is of no critical importance
for our particular application domain, while its lack simpli�es a lot both the
supercompiler and its correctness proof. Section 4 discusses the more interesting
details of the implementation itself, as well as some of the tricks used to simplify
further the correctness proof. In Sect. 5 we analyze the performance of the pro-
posed system in two aspects. First, we use the ratio of high-level proof steps (as
entered manually by the user) versus low-level proof steps (obtained after the
application of supercompilation) as a measure of the level of proof automation
the system provides. Second, we analyze the processing time requirements of the
overall system (supercompiler + underlying proof assistant), and how they can
be improved.

We assume readers are familiar with supercompilation [13, 22, 24], but not
necessarily with J-Bob. As J-Bob's principles of operation are important for
understanding the rest of the article, we brie�y review them in the following
section.

2 J-Bob Crash Course

For this supercompiler veri�cation experiment we use a proof assistant called J-
Bob. It has been recently published [2] to accompany the new book �The Little
Prover� [3] � a gentle introduction to program veri�cation and proof assistants
in general. J-Bob can be used to check proofs of properties of programs written
in a �rst-order purely functional subset of Lisp. While this Lisp dialect contains
only a few built-in data types and a handful of primitives, it can still be used to
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write interesting and complicated programs. For example, J-Bob itself is writ-
ten in the same Lisp subset it can reason about. Programs are a sequence of
function de�nitions (ordered by the de�nition-use relation), with their bodies
being expressions of 4 syntactic categories (Fig. 1): variables, constants, condi-
tional expressions, and function calls (to both built-in primitives and de�ned
functions). Only direct recursion is allowed and recursive function de�nitions
must be accompanied by a proof of termination. The built-in data types consist
only of atoms (natural numbers and symbols) and cons pairs. The built-in op-
erations are: equal, atom, car, cdr, cons, natp, size, +, <. As a small example
the function for concatenating 2 lists can be written as in Fig. 2.

Exp 3 e ::= x | 'c | (if eq ea ee) | (f e1 . . . en)

Def 3 def ::= (defun f (x1 . . . xn) ebody)

Prg 3 p ::= def 1 . . . def n

Fig. 1. Lisp syntax

(defun append ( xs ys )
( i f (atom xs ) ys

( cons ( car xs ) ( append ( cdr xs ) ys ) ) ) )

Fig. 2. List append in Lisp

Unlike many other proof assistants J-Bob does not make a distinction be-
tween logical statements and Boolean expressions: logical statements are rep-
resented as Boolean expressions1. This feature is particularly useful for our
purposes, as supercompilation deals easily with program expressions (includ-
ing Boolean ones), but not with logical statements. The if-expression serves as
the only built-in Boolean operation, but other operations are easily expressible,
for example:

a ∧ b ≡ (if a b 'nil)

a ∨ b ≡ (if a 't b)

a→ b ≡ (if a b 't)

1 As Lisp is dynamically typed, there is no static distinction between Boolean-valued
and other expressions. By �Boolean expression� we mean an expression, which always
results in a Boolean value in all dynamic contexts
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As J-Bob's logical statements are just Boolean expressions, its proofs are
actually program transformations whose goal is to transform the expression rep-
resenting a given theorem statement into the constantly true expression ('t).
Namely, a J-Bob proof is a sequence of steps, each step being one of three kinds:

� rewriting � possibly conditional � based on some equality known to be true
(either an axiom or a previously proved theorem);

� unfolding or folding of a de�ned function;
� evaluation of a built-in function called with constant arguments.

Each step is a pair consisting of:

� a path de�ning a subexpression;
� a transformation to perform on this subexpression.

Paths are just sequences of navigation steps inside compound expressions: the
single-letter atoms Q(uestion), A(nswer), and E(lse) are used to select one of the
3 subexpressions of an if-expression and natural numbers (starting from 1) index
the arguments of a function call.

As an example we can consider the proof that the list append function is
associative:

( (dethm append−assoc ( xs ys zs )
( equal ( append ( append xs ys ) zs ) ( append xs ( append ys zs ) ) ) )
( l i s t− i nduc t i on xs )
( (A 1 1) ( append xs ys ) )
( (A 1 1) ( if−nest−A (atom xs ) ys ( cons ( car xs ) ( append ( cdr xs ) ys )

) ) )
( (A 2) ( append xs ( append ys zs ) ) )
( (A 2) ( if−nest−A (atom xs ) ( append ys zs ) ( cons ( car xs ) ( append (

cdr xs ) ( append ys zs ) ) ) ) )
( (A) ( equal−same ( append ys zs ) ) )
. . .
( ( ) ( if−same (atom xs ) ' t ) )

)

The proof starts with an indication that we are to proceed by induction on
argument xs. At that point (if we have not added other steps to the proof yet),
J-Bob presents us with a proof obligation based on the body of the theorem and
the selected induction scheme:

( i f (atom xs )
( equal ( append ( append xs ys ) zs ) ( append xs ( append ys zs ) ) )
( i f ( equal ( append ( append ( cdr xs ) ys ) zs ) ( append ( cdr xs ) ( append

ys zs ) ) )
( equal ( append ( append xs ys ) zs ) ( append xs ( append ys zs ) ) ) ' t ) )

In the base case when xs is an atom, we must prove the statement directly,
otherwise we can use the induction hypothesis (equal (append (append (cdr xs)ys)zs)

(append (cdr xs)(append ys zs))) inside the proof. The �rst step of the actual proof �
((A 1 1) (append xs ys)) � unfolds the corresponding occurrence of append and the
current expression becomes:

( i f (atom xs )
( equal ( append ( i f (atom xs ) ys ( cons ( car xs ) ( append ( cdr xs ) ys ) ) )

zs ) ( append xs ( append ys zs ) ) )
( i f ( equal ( append ( append ( cdr xs ) ys ) zs ) ( append ( cdr xs ) ( append

ys zs ) ) )
( equal ( append ( append xs ys ) zs ) ( append xs ( append ys zs ) ) ) ' t ) )
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We notice the nested occurrence of a check for (atom xs), which is redundant.
We eliminate it with the next proof step � ((A 1 1) (if−nest−A (atom xs)ys (cons (car

xs)(append (cdr xs)ys)))) � where if-nest-A is an axiom from the J-Bob standard
library. The resulting expression is:

( i f (atom xs )
( equal ( append ys zs ) ( append xs ( append ys zs ) ) )
( i f ( equal ( append ( append ( cdr xs ) ys ) zs ) ( append ( cdr xs ) ( append

ys zs ) ) )
( equal ( append ( append xs ys ) zs ) ( append xs ( append ys zs ) ) ) ' t ) )

With 2 analogous proof steps we can also simplify the second call (append xs ...)

and we get:

( i f (atom xs ) ( equal ( append ys zs ) ( append ys zs ) )
( i f ( equal ( append ( append ( cdr xs ) ys ) zs ) ( append ( cdr xs ) ( append

ys zs ) ) )
( equal ( append ( append xs ys ) zs ) ( append xs ( append ys zs ) ) ) ' t ) )

There is a call to equal with identical arguments, which we can simplify with
another library axiom in the next step � ((A) (equal−same (append ys zs))):

( i f (atom xs ) ' t
( i f ( equal ( append ( append ( cdr xs ) ys ) zs ) ( append ( cdr xs ) ( append

ys zs ) ) )
( equal ( append ( append xs ys ) zs ) ( append xs ( append ys zs ) ) ) ' t ) )

At this point the answer-arm of the outermost if-expression (which corresponds
to the base case of the induction) has been reduced to 't. After 12 more proof
steps (not shown for brevity), we also reduce the else-arm to 't:

( i f (atom xs ) ' t ' t )

The last step of the proof � (() (if−same (atom xs)'t)) � reduces this last expression
to 't, which completes the proof. We have shown � by using an induction scheme
plus a sequence of elementary program transformations � that the statement of
the theorem will always evaluate to 't, no matter what arguments we pass.

3 A Supercompiler for J-Bob

3.1 Overview

The example from the previous section shows that many steps in a typical J-
Bob proof are �obvious� reductions of subexpressions. Such proof steps are very
tedious to write by hand, especially as J-Bob � being a very minimalistic prover
� insists on fully specifying all arguments of the axiom or theorem each step uses.
On the other hand many of these steps coincide directly with the steps a typical
supercompiler would take when presented with such an expression as input. So
our �rst goal is to make a supercompiler automate � as much as possible � the
tedious parts of a J-Bob proof. To support this goal, our supercompiler must
return not only the resulting expression, but also the sequence of transformation
steps used to convert the input to the output expression, similar to the certifying
supercompiler of Klyuchnikov et al. [14]:

scp : Prg × Exp → Exp × Steps
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If the input expression is the current goal of an un�nished J-Bob proof, we can
insert the returned steps inside the proof and change the goal to the �nal expres-
sion produced by the supercompiler � so such an interface to the supercompiler
ensures that it can be used directly for J-Bob proof automation. The sequence
of transformation steps is actually su�cient to reconstruct the �nal expression
from the original one. Supposing a function for performing transformation steps
(which already exists in J-Bob)

rewrite : Prg × Exp × Steps → Exp

it should hold that:

scp(defs, e1) = (e2, steps)→ rewrite(defs, e1, steps) = e2.

This observation permits us to simplify the type of the supercompiler by return-
ing only the necessary transformation steps:

scp′ : Prg × Exp → Steps

This approach makes easier the construction of the supercompiler, but also �
and more importantly � its correctness proof.

Our second goal is to see if, and to what extent, the proof automation pro-
vided by our supercompiler can help in its own correctness proof. Several obser-
vations follow from this goal:

� we must formalize the correctness proof inside J-Bob;
� the supercompiler itself must be written in the Lisp dialect that J-Bob can
handle;

� the precise formal statement of what it means for the supercompiler to be
correct must be compatible with the semantics of J-Bob.

While the �rst 2 points are trivial, the last one requires some elaboration. J-
Bob tacitly assumes that Lisp programs are evaluated in accordance with some
semantics, but this semantics is not fully and explicitly described. There are Lisp
expressions, about which J-Bob cannot reason. For example, there is no rule in
the standard library, which could tell the value of ( if (cons x y) a b), (unless both
x and y are constant values), although it is expected that this value is always
de�ned. We sidestep this lack of explicit program semantics by changing what
we mean by supercompiler correctness: we simply require that the supercompiler
return a valid sequence of transformation steps, which will not get stuck if applied
to the original expression. To formalize this de�nition in a simple and explicit
way, we need a modi�ed version of the rewriting function, which also returns an
explicit �ag if all the steps have been performed successfully:

rewrite ′ : Prg × Exp × Steps → Bool × Exp

We can then de�ne:

correct(scp′) ≡ ∀defs∀e(fst(rewrite ′(defs, e, scp′(defs, e))) = true)
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If we assume � or have a separate proof � that J-Bob transformation steps respect
the underlying semantics of the language, then the above de�nition is equivalent
to the traditional de�nition of correctness as semantics preservation.

To keep the supercompiler simple � both as implementation and as correct-
ness proof, we reuse an architecture we have already applied in another simple
supercompiler [15]. The implementation is split into layers:

� simpli�cation by basic supercompilation transformations. This layer per-
forms reductions on open expressions, such as if-expressions with a constant
condition, or calls to built-in functions with all arguments being constant.
This layer also performs if-lifting (to be de�ned precisely below) and infor-
mation propagation. No unfolding or folding happens in this layer;

� unfolding layer, using di�erent strategies.

The overall organization of the supercompiler is to perform a sequence of un-
folding steps and a subsequence of basic transformations before and after each
unfolding:

scp = (simplify) ∗ ·(unfold · (simplify)∗)∗

The following subsections explain in detail the transformations applied by each
layer. They also explain what happens with the other typical supercompiler
ingredients � folding, generalization, and whistle � which do not appear explicitly
in the architecture as outlined above.

Before we continue, we show how a proof for the same property (list append
associativity) can look like:

(dethm append−assoc ( xs ys zs )
( equal ( append ( append xs ys ) zs ) ( append xs ( append ys zs ) ) ) )
( l i s t− i nduc t i on xs )
( scp 5 50)
( expand ( ( append 5) ) ( equa l− i f ( append ( append ( cdr xs ) ys ) zs ) (

append ( cdr xs ) ( append ys zs ) ) ) )
( scp 0 50)

)

The proof has only 3 steps (versus 18 in the manual proof) � 2 calls to the
supercompiler (with di�erent options) and 1 manual step. These 3 macro-steps
are expanded to 18 steps before being submitted to J-Bob to check � incidentally
the same 18 steps as in the manual proof, but in a slightly di�erent order.

3.2 Basic Supercompilation Transformations

The proof example from the previous section has already hinted that many of
the elementary program transformations J-Bob performs are similar to those
performed by supercompilation. A detailed analysis of all available transforma-
tions (mostly in the form of axioms in the standard library) con�rms, that we
have all the ingredients to simulate supercompiler actions by J-Bob proof steps.
Table 1 lists a subset of the axioms suitable for our needs. The name and the
de�nition are given exactly as found in the J-Bob standard library, while the
remaining 2 columns illustrate the action of each rule on a typical expression.

We can roughly divide these transformation rules in 3 groups:
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Table 1. Transformation rules

Name De�nition Original expression Result expression
atom/cons (equal (atom (cons x y))'nil) (atom (cons x y)) ' nil

car/cons (equal (car (cons x y))x) (car (cons x y)) x

cdr/cons (equal (cdr (cons x y))y) (cdr (cons x y)) y

if−true (equal (if ' t x y) x) ( if ' t x y) x

if−false (equal (if ' nil x y) y) ( if ' nil x y) y

if−nest−A ( if x (equal (if x y z) y) 't) ( i f x
( . . . ( i f x y z )

. . . )
. . .

)

( i f x
( . . . y . . . )
. . .

)

if−nest−E ( if x 't (equal (if x y z) z)) ( i f x
. . .
( . . . ( i f x y z )

. . . )
)

( i f x
. . .
( . . . z . . . )

)

if−same (equal (if x y y) y) ( if x y y) y

equal−same (equal (equal x x)'t) (equal x x) 't

� rules for performing evaluation of open expressions (atom/cons, car/cons,
cdr/cons, if-true, if-false). They correspond to a form of simple partial
evaluation.

� rules for nested repeated conditions (if-nest-A, if-nest-E). Their de�ni-
tion in J-Bob is less obvious, but it simply corresponds to the way J-Bob en-
codes conditional rewriting rules � as equalities inside if-expressions. These
rules correspond to a form of information propagation (both positive and
negative) as found in supercompilation.

� rules dealing with duplicated arguments in equal and if (if-same, equal-
same). With a few exceptions, such transformations are usually not employed
by supercompilers, but it is easy to include them in our supercompiler.

If we compare these rules to the basic transformations used in other simple su-
percompilers [15], there is one ingredient missing: the ability to lift if-expression
appearing as conditions of other if-expressions. It turns out, however, that such
if-lifting can be performed with a combination of existing rules by using the fact,
that J-Bob rewriting rules can be applied in both directions:

( if ( if q a e) a' e ')

= ( if q ( if ( if q a e) a' e ') ( if ( if q a e) a' e ') ) {if-same, right-to-left}
= ( if q ( if a a' e ') ( if ( if q a e) a' e ') ) {if-nest-A, left-to-right}
= ( if q ( if a a' e ') ( if e a' e ') ) {if-nest-E, left-to-right}

Actually, we can use the same trick to lift if-expressions outside of function
calls. This is not performed by most supercompilers, because it is not safe in
general (it can make a program less terminating). The unsafe step in our deriva-
tion above would be the use of if-same right-to-left. But J-Bob ensures totality
of all expressions, so general if-lifting is a valid transformation in our case.
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3.3 Unfolding and Generalization

Unfolding is possible as a basic transformation step in J-Bob, so we are free to
add it to our supercompiler. The only question is when and in what order � since
J-Bob requires totality proofs for all functions, we are not tied to any partic-
ular evaluation order. We can consider the decision whether to unfold a given
call or not as a form of generalization. That is why we consider unfolding and
generalization together. Experiments with early versions of the supercompiler
for performing proofs have shown, that it is useful to have several strategies for
unfolding:

� best unfolding : We tentatively perform each of the possible unfoldings, sim-
plify the resulting term with the basic transformations from the previous
subsection, and select the one resulting in the smallest �nal expression.

� call-by-name: We select the �rst possible unfolding in leftmost-outermost
order.

� call-by-value: We select the �rst possible unfolding in leftmost-innermost
order.

During each (extended) proof step, the proof author can decide which strategy
is most appropriate, and select it by a switch.

3.4 Folding

As already mentioned, our supercompiler does not perform folding (yet). There
are several reasons for this decision:

� Folding seems much less useful for a supercompiler aimed at producing
proofs, than in a supercompiler tailored for program optimization or analysis.
The reason is that the goal of a J-Bob proof is to reduce a given expression
to 't. If we introduce new function de�nitions by folding, it means we have
given up any chance to arrive to a �nal expression equal to 't.

� It is not obvious how to integrate arbitrary folding inside a J-Bob proof.
J-Bob supports folding steps, but only for existing function de�nitions. It is
not possible to introduce new function de�nitions on-the-�y inside a proof.
Besides, even if there were a way, we would still have to produce a proof of
termination for each newly introduced function de�nition, which is in general
a non-trivial task.

� The lack of folding simpli�es a lot the correctness proof of the supercom-
piler. As we describe just a proof-of-concept experiment, whose main goal
is to have a supercompiler correctness proof performed with the help of the
supercompiler itself, this simpli�cation appears a worthy compromise.

Of course, if we want to use this supercompiler for other tasks beside proof
automation, adding support for folding will be highly desirable. We leave this
task for future work.
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3.5 Whistle

Whistles are critical for the performance of supercompilers aimed at program
optimization and analysis. They must not stop the transformation process too
early, as opportunities for optimization might be lost. But they should not stop
too late either � the supercompiler should not spend too much time producing
a bloated result with a lot of duplication, or even fail to stop at all. In our case,
however, the supercompiler can be called many times inside a single proof, with
di�erent goals in mind. So it is more important to provide better control to the
user in the selection of a suitable transformation strategy in each case, than to
rely on a sophisticated general whistle. To keep our implementation � and its
proof � simple, we have currently settled for a basic whistle using 2 counters: one
limiting the total number of unfoldings to perform and one limiting the number
of basic transformation steps performed between 2 consecutive unfoldings.

4 Implementation Details

4.1 Coq Prototype

Before the actual implementation of the supercompiler in J-Bob Lisp was started,
we implemented a prototype in Coq to study di�erent approaches to the imple-
mentation and their impact on the correctness proof. We used Coq, because
creating proofs of such scale and complexity by hand in J-Bob appeared so
lengthy and tedious as to be completely impractical. Currently the Coq proto-
type contains implementations of the main supercompiler components � basic
transformations and unfolding � as well as a re-implementation of the rewriting
component of J-Bob itself. These implementations match very closely the corre-
sponding code in the J-Bob version. The correctness proofs of the implemented
supercompiler components are almost complete, and demonstrate the feasibility
of formally verifying such a proof in full.

4.2 Implementation in J-Bob

J-Bob is distributed in 2 parallel versions: one that can run inside ACL2 and one
that can run inside any Scheme implementation. The J-Bob sources themselves
are almost identical in the 2 versions, but there are di�erent thin wrappers, which
emulate J-Bob Lisp on top of ACL2 and Scheme respectively. We have chosen
to use the Scheme version and our implementation is in Scheme2, although most
parts of the code are in the restricted Lisp subset supported by J-Bob. The �les3

containing the di�erent parts of the source code are brie�y described in Table 2.
The source �les contain a fair amount of deliberate code duplication, because

we need to use many pieces of code in two di�erent ways. We must execute

2 The code was tested with Racket 6.4, in R5RS emulation mode, with rede�nition of
initial bindings allowed.

3 https://bitbucket.org/dkrustev/jbobscp

https://bitbucket.org/dkrustev/jbobscp


A Supercompiler Assisting Its Own Formal Veri�cation 115

Table 2. Source code �les

File Description
Coq/JBobScp.v Coq prototype
j-bob/* A copy of J-Bob sources, as a git submodule
Scheme/j-bob-rewriter.scm Copies of some de�nitions of J-Bob itself, which

are only needed for the supercompiler correctness
proofs

Scheme/j-bob-rewriter2.scm patched versions of some de�nitions of J-Bob. The
main goal of the changes is to add an explicit re-
turn �ag if a transformation step or a sequence
of steps was successfully applied. All patched ver-
sions have the same names as the original de�ni-
tions, with an added su�x �2�

Scheme/j-bob-scp.scm Implementation of the supercompiler for J-Bob
List programs

Scheme/j-bob-expand-proofs.scm A �proof expander�: taking a list of proofs with
steps using an extended syntax, and expanding
them to simple steps directly accepted by J-Bob

Scheme/j-bob-scp-proofs.scm Proof of correctness for the supercompiler, using
proof automation supplied by the supercompiler
itself.

those parts directly (J-Bob itself, the supercompiler). We also need to reason
about the same code inside J-Bob, which, as a minimum, requires to wrap each
function de�nition with a termination proof and to package all such de�nitions
in an environment, which can be passed to J-Bob at runtime. Simple text �le
comparison can convince us that the parallel versions of duplicated de�nitions
are identical. For example, we can compare j-bob-rewriter.scm (used only
in the proofs) with the original source of J-Bob. Similarly, we can compare
j-bob-scp.scm (which is executed) to j-bob-scp-proofs.scm (which contains
(a part of) the same de�nitions inside the proof environment).

Supercompiler Implementation The main functions of the supercompiler
implementation are as follows:

� (simplify−current fullscp eroot path e) tries to �nd a sequence of suitable basic
transformation steps (Sect. 3.2) for the current subexpression e, which is at
position path inside the top-level expression eroot. The boolean �ag fullscp

indicates whether we want full supercompilation or just a simple form of
partial evaluation.

� (simplify−top fullscp e) returns (if possible) a basic transformation sequence for
a single subexpression of the top-level expression e.

� (simplify∗ defs fullscp fuel e) returns a sequence of basic transformation steps,
which simplify up to (length fuel ) subexpressions of the top-level expression e.
defs is the list of current de�nitions.
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� (unfold−steps−top defs e) returns a list of all possible unfolding steps inside the
expression e.

� (choose−unfold−step defs fullscp whitelist blacklist simplfuel e) returns a single un-
folding step according to the speci�ed strategy:

• if whitelist is not empty, the �rst unfolding (in outermost leftmost order)
for a function in the white-list is returned;
• if blacklist is not empty, the �rst unfolding (in innermost leftmost order)
for a function not in the black-list is returned;
• if both lists are empty, we select the unfolding step, which results in the
smallest new expression (after simpli�cation using simplify∗).

� (scp−steps defs fullscp unfoldfuel whitelist blacklist simplfuel e) is the top-level su-
percompiler function. It returns a sequence of transformation steps for the
expression e, which contains up to (length unfoldfuel) unfolding steps, around
each of which we can have up to (length simplfuel) basic simpli�cation steps.

As we can deduce from these descriptions, the implementation follows closely
the architecture outlined in Sect. 3.1.

Proof Expander On top of the supercompiler implementation we have built a
preprocessor, which takes proofs with a richer set of possible steps, and expands
them into a sequence of standard proof steps, which J-Bob can verify. With this
organization the proofs produced by the supercompiler (or by other extended
tactics) are always checked by J-Bob, therefore we do not need to trust them.
Some of the new proof steps include:

� (scp [<unfolding limit> [<simpli�cation limit> [<unfolding white-list>
[<unfolding black-list>]]]]). This is the step, which calls the supercompiler
on the current goal, and pastes its result at the current point of the proof.
There is also a variant starting with the keyword simpl, which performs a
reduced set of basic transformations, roughly equivalent to simple partial
evaluation. It is useful, for example, when we need to simplify a call where
most of the arguments are constants, as it produces a shorter sequence of
steps.

� (expand (<extended path>) <transformation>). This step always corre-
sponds to a single standard J-Bob step, but it permits an extended syn-
tax for paths, which is easier to use: (path1 (f n) path2) corresponds to
(path1 path3 path2), where path3 is the path to the n-th occurrence of a call
to f in the subexpression found at path1.

Readers interested in examining the source code of the implementation may
�nd it, in places, unnecessarily convoluted. Such complicated tricks are, however,
necessary to overcome limitations of the J-Bob Lisp dialect: no higher-order
functions, no mutual recursion, no let-expressions. While the �rst limitation was
not felt heavily during the development of the supercompiler (which is, after all,
just a few hundred lines), the combination of the last two restrictions proved to
be a major hurdle.
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Supercompiler Correctness Proof All the main supercompiler functions
listed above, as well as many of the auxiliary de�nition they use, return a list
of transformation steps. As a result, the structure of the correctness proof is
quite simple, and follows the structure of the implementation itself: for each
such function de�nition we have a lemma, stating that the returned list of steps
� in a suitable context � can be successfully executed by J-Bob. As an example,
here is the proof for the function simplify−current:

( (dethm s impl i fy−cur rent−cor rec t ( f u l l s c p e root path e )
( i f ( focus− is−at−path ?2 path eroot )

( i f ( equal ( find−focus−at−path2 path eroot ) e )
( equal ( car ( r ewr i t e / s t eps2 ( axioms ) e root ( s impl i fy−cur rent

f u l l s c p e root path e ) ) ) ' t )
' t )

' t ) )
n i l
( scp 1 50 ( s impl i fy−cur rent ) )
( insert−Q (A A A) ( equal ( find−focus−at−path2 path eroot ) ( i f−c ( i f .

Q e ) ( i f .A e ) ( i f .E e ) ) ) )
( (A A A A 1) ( s imp l i f y− i f− co r r e c t f u l l s c p e root path ( i f .Q e ) ( i f .A

e ) ( i f .E e ) ) )
( (A A A Q 2) ( i f ?/ i f−c / i f .Q/ i f .A/ i f .E e ) )
( scp 0 50)
( (A A E A 1) ( s impl i fy−app−correct e root path e ) )
( expand ( ( r ewr i t e / s t eps2 1) ) ( r ewr i t e / s t eps2 ( axioms ) e root ' ( ) ) )
( scp 0 50) )

It contains appeals to some lemmas about auxiliary functions (simplify−if−correct,
simplify−app−correct) and some other manual steps, interspersed with calls to the
supercompiler to �ll in the tedious parts of the proof.

There are a few important design decisions, which substantially simpli�ed
the formal proofs of supercompiler correctness. As the de�nition of correctness
(Sect. 3.1) uses the J-Bob rewriting machinery as a reference point, we use the
same machinery as much as possible in the implementation of the supercompiler
as well. For example, we could implement positive/negative information prop-
agation by keeping track of the set of conditions we know to be true/false, as
we descend recursively inside subexpressions. The J-Bob rewriter uses, however,
a di�erent approach (likely more adapted to its own architecture). There are
functions (prem−A?/prem−E? prem path e), which check if condition prem occurs pos-
itively/negatively somewhere on the given path inside the top-level expression e.
So we chose to use the same functions for information propagation inside the
supercompiler, which is the main reason to carry around the top-level expression
eroot in most supercompiler functions. Another decision, explicitly aimed at sim-
plifying the correctness proof, was to use a small-step-style implementation not
only for the unfolding steps, but for the basic transformation steps as well. The
reason can be explained with the following example. If we simplify the expression
(f e1 e2) using a big-step style, we �rst compute recursively the simpli�cation
steps for e1 and e2 (say steps1 and steps2), and the result for the whole ex-
pression will be (append steps1 steps2). What is important is that we compute
steps2 in the context of the original expression, but the rewriting engine will
have to apply them on the result of applying steps1 to this initial expression.
This mismatch prevents a simple inductive argument, because we cannot use
directly the inductive hypothesis for e2. In order to make such a proof feasible,
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we would have to �rst formalize that the transformation steps for e1 and e2 are
independent, as they treat disjoint subexpressions, which would complicate and
lengthen the proof considerably.

The proof of the full J-Bob supercompiler is far from complete � mostly for
reasons we discuss in the next section. Existing proofs cover many of the basic
transformation steps, however, and clearly demonstrate the importance of super-
compiler proof automation to make them feasible. Completing the formal proofs
should simply be a matter of investing more time and solving some problems un-
related to the use of supercompilation in veri�cation. The Coq prototype shows
there are no important technical di�culties in the formal proofs themselves.

5 Performance Evaluation

Table 3 contains some statistics about the currently existing lemmas in the
supercompiler correctness proof4. The proofs are classi�ed � subjectively � in 3
categories:

1. �typical� proofs, which rely mostly on logical reasoning (analysis by cases,
appeals to existing lemmas, rewriting, . . . );

2. proofs by direct computation (which requires, however, many J-Bob standard
steps);

3. a mixture of the above 2 categories � proofs that for the most part are like
those in the �rst category, but also contain steps using computation over
known values.

The statistics presented in the table support this classi�cation � the values in
the last two columns are very similar within the categories 1 and 2, but quite
distinct between the two categories. Category 3 has more diverse values, but on
average they are between those for category 1 and category 2.

The good news �rst: Even if we completely ignore the statistics of categories
2 and 3, we can conclude that supercompilation is of great help as a form of
proof automation: category 1 has almost an order of magnitude of savings in the
number of proof steps one has to enter manually (7.14 expanded steps per single
original step). If we include all categories, the savings are even more impressive
� almost two orders of magnitude.

The bad news is that the current implementation is too slow to be used
in an interactive fashion. The expansion of all existing proofs (which are only
a part of the full supercompiler correctness proof) takes almost 40 sec in this
experiment; with the time J-Bob requires to verify the expanded proofs, the full
time is almost 75 sec. As J-Bob reevaluates all existing proofs after each user
modi�cation of the current proof, working on the supercompiler correctness proof
requires waiting for over a minute between each 2 interactive proof changes.

4 Tests performed on a laptop with a Intel(R) Core(TM) i7-2640M CPU @ 2.80GHz,
8 GB RAM, OS Microsoft Windows 7 Pro 64 bit, using DrRacket 6.4 with debug
info switched o�.
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Table 3. Correctness proof statistics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1 path-b-exp-induction 3 2 6 110 120 0 66.67% 2.00
1 focus-is-at-path/rewrite-focus-

at-path
18 11 143 5475 5530 611 61.11% 7.94

1 focus-is-at-path/rewrite-focus-
at-path/cons-true

6 1 28 187 190 31 16.67% 4.67

1 simplify-if-correct 14 7 87 3588 3590 764 50.00% 6.21
1 if?/if-c/if.q/if.a/if.e 8 2 58 250 260 0 25.00% 7.25
1 app?-cons/car+cdr 3 2 19 156 150 16 66.67% 6.33
1 simplify-app-quoted-correct 14 9 188 577 590 16 64.29% 13.43
1 list2?-expand-list 5 2 18 156 150 0 40.00% 3.60
1 simplify-app-not-quoted-correct 12 6 92 2668 2670 80 50.00% 7.67
1 simplify-app-correct 7 4 30 265 270 16 57.14% 4.29
1 simplify-current-correct 8 3 37 359 350 32 37.50% 4.63
2 lookup/if-true 1 1 324 422 430 32 100.00% 324.00
2 lookup/if-false 1 1 370 421 430 32 100.00% 370.00
2 lookup/if-nest-a 1 1 462 593 590 78 100.00% 462.00
2 lookup/if-nest-e 1 1 416 577 580 64 100.00% 416.00
2 lookup/atom/cons 1 1 48 172 180 47 100.00% 48.00
2 lookup/equal-same 1 1 186 296 290 15 100.00% 186.00
3 simplify-if-correct-if-true 16 12 1126 2840 2880 330 75.00% 70.38
3 simplify-if-correct-if-false 16 12 1135 3026 3030 392 75.00% 70.94
3 simplify-if-correct-if-nest-a 14 11 1722 5257 5380 623 78.57% 123.00
3 simplify-if-correct-if-nest-e 14 11 1003 3932 3950 376 78.57% 71.64
3 simplify-atom-correct 25 11 1180 5397 5410 95 44.00% 47.20
3 simplify-equal-correct 29 16 589 2434 2430 47 55.17% 20.31
1 Total by category 99 49 707 13916 13990 1566 49.49% 7.14
2 Total by category 6 6 1806 2481 2500 268 100.00% 301.00
3 Total by category 114 73 6755 22886 23080 1863 64.04% 59.25

Total 219 128 9268 39283 39570 3697 58.45% 42.32
Total time with proof checking 73726 74140 4335

Column Description

(1) Lemma category
(2) Lemma name
(3) Total number of steps in original proof
(4) Number of supercompilation steps in original proof
(5) Total number of steps after proof expansion
(6)-(8) CPU/real/GC time (msec) for proof expansion (including supercompi-

lation), as reported by Racket's time function
(9) Frequency of supercompilation steps in original proof
(10) Ratio of expanded to original proof steps
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Initially the performance of the system was even worse, but we managed
to improve it substantially by adding some new options to the supercompiler:
a call-by-value unfolding strategy was added beside the existing ones (�best�
unfolding and call-by-name); a �ag was added to perform only a reduced set of
basic transformation steps, corresponding to a form of simple partial evaluation.
Table 4 demonstrates the e�ect of these options on the most time-consuming
proofs in category 2. These proofs contain only a single call to the supercompiler,
and they can be completed by using any combination of options, which makes
them suitable for this comparison. The table shows � as expected � that CBV
outperforms a lot CBN and that simple partial evaluation is a little bit better
than full supercompilation. Of course, such comparisons are meaningful only
when all options lead to the same result in the corresponding proof.

Table 4. Evaluation strategy statistics

Full supercompilation Simple partial evaluation
CBN CBV CBN CBV
(1) (2) (1) (2) (1) (2) (1) (2)

lookup/if-true 1038 4960 498 592 716 2840 324 422
lookup/if-false 1226 6209 569 624 858 3478 370 421
lookup/if-nest-a 1632 8830 711 749 1172 4977 462 593
lookup/if-nest-e 1424 6989 640 717 1010 4134 416 577
lookup/atom/cons 120 390 72 203 74 327 48 172
lookup/equal-same 534 2028 285 406 350 1295 186 296

Column Description

(1) Total number of steps after proof expansion
(2) CPU time (msec)

Even with these improvements we still need one �quick-and-dirty� trick to
get around the performance problem. Proofs are split into smaller pieces (in
the form of auxiliary lemmas). Especially those parts of a proof, which involve
direct computation only, are extracted as separate lemmas whenever it is not too
complicated. (This is the real reason for the existence of all lemmas in category
2.) After the proof of each such lemma is ready and checked, we shunt it by
replacing it with a fake proof, which consists of only a single J-Bob standard
step (using a fake axiom). Such shunting is especially useful for the lemmas in
categories 2 and 3. When it is put in place, the total time for proof expansion
and checking goes down to a little over 10 sec on the same machine, which is
already (barely) acceptable for interactive proof editing. Still, the rechecking
time between proof modi�cations will go up as we continue to make progress
towards a full proof of supercompiler correctness (comparable to that in the
Coq prototype). Given the current performance of the system, we decided to
postpone the work towards completing the proof until we can achieve more
improvements in its reactivity.
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If we want better improvements in performance, we must �rst analyze the
causes for the current long processing times. They seem mostly related to the
underlying proof assistant:

� J-Bob does not have its own interactive editor or shell. It just provides a
simple high-level API, which can be used directly from the Scheme REPL.
As this API is stateless, it entails full rechecking of all current proofs after
each user interaction.

� J-Bob only allows very elementary program transformations as proofs steps.
Allowing even a simple form of partial evaluation as a built-in proof step
(similar to what proof assistants like Coq and Agda provide) would eliminate
a big source of ine�ciency in the proofs listed in Table 3.

� The restrictions of J-Bob's Lisp subset � especially the lack of let-expressions
� often make it too hard to write an e�cient version of the algorithm one
has in mind. Instances of this problem exist inside the sources of both J-Bob
itself and our supercompiler: sometimes they perform multiple traversals or
repeat some computations just because of the lack of let-expressions.

Of course, all these limitations stem from the goal of J-Bob: to be a minimalistic
proof assistant used mostly for educational purposes. Solving some of these lim-
itations � such as the introduction of a built-in partial evaluation step � would
require modifying J-Bob itself, and making it bigger, more complex, and po-
tentially less reliable. Some other limitations can probably be removed without
touching the J-Bob core. Adding let-expressions can likely be done by a prepro-
cessor. A dedicated J-Bob REPL (or even just a statefull API for the Scheme
REPL) would avoid the need to recheck all proofs after each interaction. We
leave the study of these possibilities for future work.

6 Related Work

Proof automation is a large and active research area, covering a broad range
of methods. The bibliography of one recent book [7] has about 700 references.
We shall therefore not attempt a thorough comparison of the current method to
other existing methods for proof automation, limiting ourselves instead to just
a few works we consider most relevant.

J-Bob is closely related to ACL2 [10] and Milawa [1], as they all follow the
traditions of the early Boyer-Moore prover, Nqthm. But because of their di�er-
ent intended usage, these provers have important di�erences. While J-Bob is a
minimalistic educational tool, with no proof automation at all, both ACL2 and
Milawa have facilities for proof automation. ACL2 is an industrial-strength the-
orem prover with powerful methods for automatic proof search. Its architecture
is monolithic, without a dedicated core, and bugs anywhere in the system can
impact its soundness as a prover [1]. Milawa is another prover in the Nqthm
family, which proposes an interesting solution to the soundness and trusted-core
problems. Its minimal core proof checker has to be trusted, while a re�ection
mechanism allows a new proof checker to be installed, if its soundness can be
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veri�ed by the current checker. By repeatedly installing new proof checkers,
which accept higher-level proof steps, the level of Milawa can be raised to one
approaching in power ACL2 [1]. In our approach, we leave the core proof checker
(J-Bob) untouched, and instead expand higher-level proof steps into sequences
of steps it can check. Such proof expansion can lead to high processing-time re-
quirements in larger proofs. On the other hand, Milawa requires trusting not only
its core proof checker (which appears even simpler than J-Bob), but also its re-
�ection mechanism. We leave a more detailed comparison of the two approaches
for future work.

The idea to apply supercompilation for proof automation appears already in
some of Turchin's early papers [23]. Di�erent speci�c applications of veri�cation
by supercompilation have been studied [11,13,18,19]. In all these cases we have
to rely on the correctness of the used supercompiler, or have it proven correct,
in order to trust the results of veri�cation. There is even a theorem prover based
on distillation (a program transformation method closely related to supercompi-
lation) � Poitín [6]. Again, it appears that distillation is closely integrated into
the kernel of this prover, so that bugs in its implementation may impact the
soundness of the proved results.

Klyuchnikov et al. [14] propose an elegant solution to avoid the necessity
to trust that the supercompiler is bug-free. They introduce a certifying super-
compiler, which produces � together with the resulting transformed program �
a proof that it is equivalent to the input program. This proof may be veri�ed
by an independent proof checker (hopefully much simpler than the supercom-
piler, and so with lower probability of soundness-critical bugs). We use the same
idea, with a shortcut: our supercompiler produces only a proof, and the resulting
program can be recovered from this proof by an independent process. Another
important di�erence is that the supercompiler of Klyuchnikov et al. is imple-
mented in a language (Scala) very di�erent from the one it can treat (a version
of Martin-Löf type theory). So their supercompiler cannot be used directly for
its own veri�cation.

Self-application has long been a desirable � but also somewhat elusive �
goal in the context of supercompilation and partial evaluation in general. This
interest stems mostly from the possibility to apply the Futamura projections [4],
which enable the production of compilers from interpreters, and of compiler
generators. Such optimizing self-application has been demonstrated �rst with
partial evaluation [9], and then extended to cover online partial evaluation [5].
It appears harder to achieve in the context of supercompilation � there is a
single description of successful experiments of self-application with a version of
the Refal supercompiler [20]. The supercompiler we describe is self-applicable
� in a sense that it can process programs in the same language it is written
in. It cannot hope to achieve Futamura-projection-like self-application, mostly
because it currently lacks folding. As we have demonstrated, it is still powerful
enough to be used in proofs reasoning about its own sources.

The formal veri�cation of supercompilers has recently emerged as an inter-
esting research topic. In earlier work [15] we have demonstrated � on a simple
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supercompiler for a tiny imperative language � the feasibility of this task. The
current work reuses some ideas of that previous veri�cation e�ort, most notably
the decomposition of the supercompilation process in several phases. Subsequent
research on formal correctness proofs for supercompilers has mostly concentrated
on providing general frameworks, which can simplify the veri�cation of many dif-
ferent supercompilers [16, 17, 21]. In all these cases a general proof assistant is
used (Coq, Agda), and no attempt is made to use a supercompiler as a proof
automation tool for its own veri�cation.

7 Conclusions and Future Work

We have described the design of a certifying supercompiler, which can work to-
gether with a proof assistant (J-Bob) and supply automatically generated proof
fragments upon request by the proof assistant user. The supercompiler is also
self-applicable, as it is written in the same �rst-order subset of Lisp, which it can
process. This feature cannot currently be used for producing Futamura projec-
tions, as the system does not implement folding yet. Self-application, however,
permits the supercompiler to supply proof automation for its own correctness
proof. To the best of our knowledge, this is the �rst successful experiment, where
a supercompiler can assist its own formal veri�cation. We have quanti�ed the
amount of proof automation the supercompiler provides by measuring the ra-
tio of high-level proof steps (relying on supercompilation) versus low-level proof
steps that the proof checker can verify directly. This ratio shows an almost
two-orders-of-magnitude improvement, when calculated on the ready part of the
supercompiler correctness proof. We estimate that such improvement is su�cient
as proof-of-concept for the applicability of the proposed approach.

An interesting feature of our approach is that the user is not forced to use the
supercompiler in a one-shot, all-or-nothing fashion on a given problem. Instead,
the user builds formal proofs in interaction with a proof assistant, and at each
step of the proof she may try to call the supercompiler for help. It would be
interesting to study if such an incremental approach can work in other domains
(like program analysis).

To make the implemented system really practical for users of J-Bob, we need
to solve the performance problems we have detected while working on the su-
percompiler correctness proof. Our analysis indicates most of these performance
issues are ultimately related to limitations of J-Bob itself. We have outlined some
possible solutions, which we may try in the future.

Another interesting possibility is to apply the same approach to di�erent
proof assistants, featuring di�erent programming languages. As Klyuchnikov et
al. [14] have demonstrated, it is possible to build a certifying supercompiler for a
language with higher-order functions and dependent types, such as those found in
proof assistants like Coq and Agda. The challenge will be to produce a similar
supercompiler, which is self-applicable and integrated with the corresponding
proof assistant.
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