Simple Programs on Binary Trees — Testing and
Decidable Equivalence

Dimitur Krustev

IGE+XAO Balkan, Bulgaria

dkrustev@ige-xao.com

Abstract. We consider a class of simple (iteration/recursion-free) pro-
grams operating on unlabeled binary trees. We introduce a cumulative
hierarchy of subclasses of programs, which cover the whole class, such
that a finite adequate test set exists for each subclass. By taking the
minimum subclass, in which a pair of programs live, we can decide just
by testing if they are extensionally equivalent.

1 Introduction

Program testing and decidability of program equivalence are two topics with
numerous theoretical and practical applications. These topics are closely related
on a fundamental level [3]. Both problems — existence of an adequate finite test
set and program equivalence — are undecidable not only for Turing-complete
languages, but also for many smaller classes of programs [3]|. So, discovering
classes of programs, for which one or both problems are decidable, can be of
great interest. Here we study one such specific class of programs operating on
unlabeled binary trees. Programs are composed of operations for building trees,
checking tree emptiness, and extracting subtrees. The language is variable-free,
similar to Backus’ FP [2].
The main results we present are:

— the definition of a cumulative hierarchy of subclasses of programs covering
the whole class — Sect. (based on a definition of program normal forms
introduced previously by the author [8,/10]);

— proofs of existence (Sect. and optimality (Sect. of finite adequate
test sets for programs in each subclass;

— adecision procedure for program equivalence (Sect. , based on the existence
of finite adequate test sets.

We start by introducing the class of simple programs we consider (Sect. .
We then briefly review the notion of program normal forms (Sect. , which is
obtained by program transformations directly inspired by supercompilation and
deforestation [13}/15,[16]. Some definitions related to program testing are briefly
introduced in Sect. The rest of Sect. [4]is devoted to the description of our
main result — the existence of finite adequate test sets.

Simple Programs on Binary Trees — Testing and Decidable Equivalence 127

We can illustrate the proposed method on a simple example. Consider the 2
programs in Table [1} The first one (I) simply returns the input tree unchanged.
The second (ifnil(I,nil, cons(hd,tl))) returns an empty tree if the input tree
is empty, otherwise it builds a new tree containing the left and right subtree of the
input as left and right subtree correspondingly. Clearly both programs compute
the identity function. We can prove this fact in many ways, but using the main
result of this article (Theorem [I) we can just check it by direct computation —
comparing the results of the 2 programs on input trees of depth < 2.

Table 1. Example of deciding program equivalence by testing

input | |ifnil(I,nil, cons(hd, t1))
nil nil nil
(nil . nil) (nil . nil) (nil . nil)

((nll nil) . nil) ((nll nil) . nil) ((nll nil) . nil)
E 1. (nil . nil)) E 1. (nil . nil)) E 1. (nil . nil))

(nil . nil) . (nil . nil))|((nil . nil) . (nil . nil))|((nil . nil) . (nil . nil))

2 Simple Programs on Binary Trees

The programs we consider operate on unlabeled binary trees. We use textual
Lisp-like notation for such trees, whose grammar is:

T 2= nil | (T .T)

As an example, the notation (nil . (nil . nil)) corresponds to the tree in Fig.

il

Fig. 1: Tree (nil . (nil . nil))

While this data structure is simple, it is universal, as we can encode arbitrary
data as such trees. We give examples of such possible encodings below:

— [®]Bool : Bool =T
[false]poor = mil
[true]poor = (nil . nil)

128 Dimitur Krustev

— [oly : N> T
nil

(nil . [n]y)

1
S S
+ =z
—
—
z
I

— |—.-|List;(X) . LlSt(X) —>T

[TList(x) = nil
[[z1, 22, .. zn]luisexy = ([z1]x - (22, @0] lList(x))

There are other, more popular universal data types in computer science — such as
natural numbers and bit-strings. A distinctive advantage of binary trees is that
they natively support pairing as a primitive operation, making the encoding of
complicated data structures easier.

We can define the depth of a binary tree recursively in an obvious way and
introduce sets of trees T of depth no more than N € N:

depth : T —-N

depth(nil) = 0

depth(ty . ta) = 14 maz(depth(t1), depth(tz))
Tn = {teT| depth(t) < N}

The programs we consider are expressions (Fig. [2) built of:

— operations for constructing (nil, cons) and destructing (hd, t1) trees;
— conditional operation (ifnil);
— identity function (I) and function composition (o).

As these programs are just expressions, we shall use both terms interchangeably.
Note that there are no variables in our language. This is not an important limi-
tation, as the combination of built-in pairing and function composition permits
us to encode an arbitrary set of variables [2,/7)8]. The semantics of our language
is defined in Fig. 3] To capture the possibility of errors during program execu-
tion, we use a domain extended with a new distinct element L: T :=T U {L}.
In the defining equations we use wild-cards (“_”) to match arbitrary items not
matched in any previous equation.

E = I|hd|tl|nil|cons(E,E)|FEoF |ifnil(E,E,E)

Fig. 2: Program syntax

Clearly, the class of programs we consider is far from Turing-complete, lack-
ing any means for expressing iteration or recursion. As we are interested in de-
cidable (extensional) equivalence, however, it is essential to consider restricted
languages, as for more expressive languages equivalence is typically undecidable.
This undecidability holds not only for Turing-complete languages, but even for
relatively small subsets of the primitive-recursive functions, for example the class

Simple Programs on Binary Trees — Testing and Decidable Equivalence 129

[e] cE—=T, =T,

[1](2) — 2

[[hd]](tl . tg) =1

[[tl]](tl . tg) = t2

[nil](x) =nil

[cons(e1, e2)] () = ([ea] (=) - [e2](2))

[e1 o e2](z) = [ex]([e2](=))

[ifnil(e, e2,e3)](x) = [e2](z) , if [e1](z) = nil
[ifnil(e1, e2,e3)](z) = [es](x) , if [ei](z) = (t1 . t2)

[_1C0) =1

Fig. 3: Program semantics

of elementary functions. Our class of simple programs is inspired by the simple
programs introduced by Tsichritzis [14]. An important difference is that our do-
main consists of binary trees (and thus has a pairing operation), while Tsichritzis
uses natural numbers as a domain and pairing is not definable.

3 Program Normal Forms

We can apply a number of simplifying transformations on expressions in the
class we consider. Let sel € Sel := {hd, t1}; the transformations we use are:

Ioe=eol=e
sel o cons(eg,es) = ¢;
niloe =nil
cons(ey, ez) o e3 = cons(e; o e3,e3 0 e3)
eoifnil(ey,eq,e3) = ifnil(ej,eoeq,e0e3)
ifnil(e;,e9,e3) 0e = ifnil(ej oe,ex0e,e30¢€)
ifnil(nil,e;,e2) = €1
ifnil(cons(en,€t),€1,€2) = €a
ifnil(ifnil(ey, e, e3),€h,€5) = ifnil(e;, ifnil(es, €y, eh),
ifnil(es,€h,€h)) 9)

Transformations permit to simplify instances of function composition (by
either eliminating it completely or by pushing it inside subexpressions). Ta-
ble [2| shows that these rules cover all cases of function composition, except for
sel; o sel;. After these rules are applied to the condition of an if-expression, the
remaining rules [7}[0] allow to simplify it further.

If we exhaustively apply these transformations in a bottom-up manner, the
resulting programs will be of the form shown in Fig. 4| (with an empty list of
selectors being equivalent to I). We omit a detailed description of the algorithm
nf : E — E™ for producing normal forms, and the proofs of its properties

130 Dimitur Krustev

Table 2. Simplification rules for function composition

o | I |hd/tl|nillcons(:,-)|ifnil(:,,")
1) @ 1
- | L
ENE)
(4 |

E™ = nil | cons(E™f, E"Y)
| selio...osel, (n>0)
| ifnil(sely o...o0 seln, E™ E™) (n > 0)

Fig. 4: Syntax of program normal forms

(shape of normal forms, semantics preservation), as both the algorithm and the
proofs appear in previous works by the author [81(10].

We can illustrate the transformation of programs into normal form with
a simple example — the composition of 2 Boolean negations. The result is, as
expected, a program converting an arbitrary input tree into (an encoding of) a
Boolean value, without negation.

nf(ifnil(I, cons(nil,nil),nil) o (ifnil(I, cons(nil,nil),nil)))

= ifnil(I,nil, cons(nil,nil))

The transformation rules described above are very similar to those used in
supercompilation [13,/15] and deforestation [16]. In fact, we can consider the
method for producing normal forms as a simple kind of supercompilation. As
our language does not have loops or recursion, we do not need many of the
complications involved in supercompilers for more powerful languages, such as
folding, whistle, generalization.

4 Finite Adequate Test Sets for Simple Programs

4.1 Some Notions Related to Program Testing

We summarize here some definitions related to program testing used in the
rest of the paper. We borrow most definitions from Budd et al. [3], but with
slight differences in notation. In this subsection we consider an arbitrary set of
programs P over a set of data D. The semantics of programs is given by an
evaluation function [e] : P — D — D.

— Given a program p € P, a program neighborhooaﬂ is any subset of programs
&(p) C P, such that p € &(p).

! not to be confused with neighborhood analysis as a metacomputation technique

Simple Programs on Binary Trees — Testing and Decidable Equivalence 131

— A test set is a subset of data T C D (usually tacitly assumed finite).
— A test set T is adequate for a program p (relative to a neighborhood @(p))
if for any program ¢ € ®(p) it holds:

(Vd € D, [pl(d) = [4](d)) > (Vd € T, [p](d) = [4](d))

The left-to-right direction in the last definition is trivial, as T C D; it is the
right-to-left direction, which is important.
Relatively adequate test sets are often non-computable [3|:

if @(p) are all programs in any Turing-complete language
...or all primitive recursive programs on N
— ...or even all programs computing polynomials with integer coefficients

So, it is interesting to study classes of program neighborhoods, for which such
tests are computable.

4.2 Subclasses of Simple Programs as Program Neighborhoods

Given some N € N we define a subclass E]T\L,f of expressions in normal form as
those satisfying the following grammar:

Ezf = mnil | cons(EX,f,E;\l,f)
| selyo...osel, (0<n<N)

| ifnil(sel;o. ..o sel,, B ER) (0 <n < N)

It is immediately obvious from this definition that these subclasses form a cu-
mulative hierarchy covering the whole set of normal forms E™/:

- E;\Lff & E?\}iﬁ
- UNGNE]T\LI = E™.

Note also that each subclass contains infinitely many programs. By extension,
we classify any program e € E to be in subclass E;f,f if nf(e) € Ex,f. The main
intuition behind the introduction of these subclasses is that programs in Ejy/
can only “see” at depth not more than NV inside the input tree. This intuition is
made formal by the following statement, which is the main result of this article:

Theorem 1. (IIIT'r'm_fized_MamSelCmpLe'n,_testabl VN € N,Veq,eq € E;\l[f,
(Vt € T, [ea](t) = [e2] (1)) — VE € T, [ex] (t) = [e2](¢)

If we compare this result with the definitions from the previous subsection,
we can see that the classes E;{,f can serve perfectly as program neighborhoods:
if e € EV and we set ®(e) := E | Theorem [1| shows there is a computable
adequate test set for e. We devote the following subsections to an overview of
the proof of this theorem.

2 The results of this article have been formally verified in Coq. In parentheses we
give the corresponding names of the theorems/lemmas in the Coq sources — https:
//github.com/dkrustev/SimpleTreeExprTests

https://github.com/dkrustev/SimpleTreeExprTests
https://github.com/dkrustev/SimpleTreeExprTests

132 Dimitur Krustev

4.3 Tree Decomposition

In order to formalize the intuition about programs in E;f,f “seeing” at depth at
most NN inside the input tree, we consider the decomposition of a tree ¢ into (Fig.

5):
— atree t; € Ty, which is isomorphic to t up to depth N;
— trees ta, . ..,t, corresponding to all subtrees (if any) of ¢ with roots at depth
N.

d
ti 2
Fig. 5: Tree decomposition
To be able to recover the original tree ¢ from its decomposition tq,ts, ..., ¢y,
we need to indicate the position of each ¢; (i € {2,...,n}) inside ;. One way to

achieve it is to introduce trees with variables: given a (finite) set X of variables,
the set T'x of trees with variables in X is given by the following grammar:

Tx = nil | (TX . Tx) ‘ x (SC € X)
The decomposition function is then cutAt : N xT — (X — T) x Tx,
cutAt(d,t) = (o,t,), where:

— t, is the tree ¢t with all nodes at depth d replaced by variables from X
— o is a substitution assigning the corresponding subtree to each of these vari-
ables

Ezxzample:
cutAt(1, ((nil . nil) . ((nil . nil) . nil)))
= ({z — (nil . nil),y — ((nil . nil) . nil)},

(= . y))

Simple Programs on Binary Trees — Testing and Decidable Equivalence 133

The action of variable substitutions is lifted to trees in the obvious way:

nilo =nil
(tl . t2)0‘ = (tla . th’)
xo =o(x)

The correctness of the decomposition function follows from the next lemma.

Lemma 1. (vCutdt_mvSubst) Vd € N,Vt € T,Yo,Vt,, cutAt(d,t) = (0,t) —
t.o=1t.

As cutAt is defined by structural recursion over the input tree ¢, the proof of its
correctness is by straightforward induction on ¢.

4.4 Existence of Adequate Test Sets

The proof of our main result relies on a couple of key observations. The first is
that we can commute evaluation and substitution, provided the input tree with
variables contains no variables at depth N or less. Before we write down this
lemma, let us introduce some definitions. We can extend the evaluation function
to work on trees with variables as well, denoted [e]x : E — Tx, — Tx, . We
can use exactly the same definition as in Fig. 3] as we want the evaluation to
return an error (L) whenever it encounters a variable as (top-level) input. The
definition of minimum variable depth is equally straightforward:

minVarDepth(nil) = oo
minVarDepth(ty . t2) = 1 + min(minVarDepth(t,), minVarDepth(tz))
minVarDepth(z) =0

Now our conditional commutativity property looks as follows:

Lemma 2. (ntmvEval_ntEval) VN € N, Ve € E;\L,f,VX, Vo: X —>TVt, € Tx,
N < minVarDepth(t,) — [e](tz0) = ([e] x (tz))o-

The proof is by induction on the structure of e. We use the condition N <
minVarDepth (t,) in several cases to derive a contradiction.

The second key observation is that if we have a pair of syntactically different
trees with variables, we can always build a “shallow” substitution, which — when
applied to each of the 2 trees with variables — produces different ordinary trees.
The substitution in question is shallow in the sense that it maps all variables to
trees of depth 0 or 1.

Lemma 3. (muSubst_discrim) VX, Vi1, ta € Tx,t1 # ta — Jo, (Vz € X, o(x)
S Tl) Nt1o 75 too.

Proof sketch: there must be at least one pair of corresponding subtrees | and
th, with different root nodes

— if neither root is a variable, then the trivial substitution will do: o(z) =
nil,Vz € X;

134 Dimitur Krustev

— if only one root is a variable, say y
e if the other root is nil, then o(z) = if x = y then (nil . nil) else nil;
e if the other root is (¢5 . t4), then o(x) =if z = y then nil else (nil . nil);
— it ¢} =z, t, =y, then we can use:

o(x) =nil
o(y) = (nil . nil)
o(z) =nil Vze X,z #x,z #y.O

Armed with these observations, we can proceed with establishing the exis-
tence of finite adequate test sets:

Lemma 4. (NTrm_fized_MazSelCmpLen_testable_auz) VN, Vey, ey € E;L,f, (3
t €T, [ea](t) # [e2] () = 3t € Tvya, [eal (t) # [e2] (2).
Proof sketch:

—let t €T, s.t. [e1](t) # [e2] (t)

— let (0,t;) = cutA¢(N,t)

— then [e1](ty0) # [e2](tz0) (by Lemmal[1)

— commute evaluation and substitution: ([e1]x(tz)) o # ([e2]x(tz)) o (by
Lemma

e possible because cutAt(N,t) = (o,t,) ensures the required condition
N < minVarDepth(t,,)

— 50 [e1]x(ta) # [e2]x (t2)

— the most interesting case is when both evaluation results are # L

— then (by Lemma [3) we can find o’ s.t. all o/(z) € Ty and ([e1]x (t))o" #
(lealx (t:))o"

— commute substitution and evaluation (again by Lemma [2): ([e1](t,0”)) #
([e2](t0"))

— let ¢/ =ty0’; we have t' € Ty and [e1](¢') # [e2] (¢). O

Now it suffices to remark that Lemmal[d]is just the contrapositive of Theorem
which concludes the proof of our main result.

4.5 Test Set Optimality

If we consider the whole set E]Ti,f as a neighborhood of the program e € E;\l[f ,
we cannot substantially improve the size of the adequate test set provided by
Theorem [} as the following theorem shows:

Theorem 2. (undiscrTerms_ezist) VN € N, ey, es € EK,{H, such that Vt €
Tnst, [ea](t) = [e2] () and 3t € T, [ex](t) # [e2](2).-
Proof sketch: it suffices to take
e;1 =hdoe
eo =tloe, where:
e =hdo...ohd
—_—

N times

Simple Programs on Binary Trees — Testing and Decidable Equivalence 135

5 Decidability of Equivalence of Simple Programs

One direct application of the existence of finite adequate test sets is the decid-
ability of equivalence for our class of simple programs. If we consider 2 programs
e1,e2 € E, we can proceed as follows:

— find the smallest N, such that nf(e1), nf(e2) € Eﬁ,f;
— test if [[61]](1&) = [[62]]((‘,) for all t € TN+1

If there is some ¢, for which the 2 programs return different results, they are
clearly not equivalent. If, however, there is no such ¢ € T 41, then by Theorem
[]it follows that the 2 programs are equivalent.

The asymptotic complexity of this decision procedure is superexponential.
Indeed, the number of unlabeled binary trees of depth no more than NV is given
by the following recurrence:

apg = 1
aN4+1 = a?\, +1
According to OEIS [12], ay =< 2" where ¢ = 1.2259 . . ., which directly gives an
superexponential bound for our algorithm. We leave as future work the search for

algorithms of lower complexity. One idea that might work is to consider smaller
subclasses of expressions of the following form:

ng = nil | cons(ng,ng)
| selyo...osel, (selyo...0sel, €5)
| ifnil(sel;o... o sel,, ng,ng) (selyo...o0sel, €85)

If we can adapt our proof of existence of adequate test sets to this kind of smaller
program neighborhoods, we can hope to get asymptotically smaller tests sets and
as a result — a faster decision procedure for program equivalence.

6 Related Work

As already noted, the main results in this paper are very similar to — and to some
extent inspired by — the work of Tsichritzis [14]. Tsichritzis starts with a sub-
class of primitive-recursive programs on natural numbers — namely, those having
no nested loops — and first shows that all such programs can be represented
as compositions of several simple operations. Then finite test sets are defined
for this language, and — as a consequence — a decision procedure for program
equivalence. We, on the other hand, start directly with a language consisting of
expressions, which are composed of several simple operations on binary trees.
Still, the languages considered are very similar in spirit, modulo differences in the
data domains. The use of binary trees is an important advantage of our approach:
as we have already noted, binary trees come with pairing as a built-in primitive,
and it permits easy encoding of arbitrary data structures. The language, treated
by Tsichritzis, is too weak to encode arbitrary pairing.

136 Dimitur Krustev

Binary trees have often been used in practical programming languages since
the early days of Lisp. While most theoretical models of computation use either
natural numbers or sequences over a fixed alphabet as the only data structure,
several authors have noted the usefulness of binary trees in a more theoretical
setting as well, for example Jones [7]. The variable-free nature of our language
has its roots in Backus’ FP [2], but Jones has proposed a similar language of a
single variable [7].

The main results we report are enabled by the specific shapes of normal forms
that we can produce by supercompilation-like program transformations. In this
respect, the current work is an offshoot of some of the author’s previous research
on supercompilation [8l10]. Supercompilation — and metacomputation techniques
in general — are the basis of several other methods for test generation [1}(9}10].
Abramov’s neighborhood testing [1] ensures strong adequacy properties for the
generated test sets and covers arbitrary languages, but it is not guaranteed to
terminate. Our skeleton testing method [10] produces adequate test sets for a
Turing-complete functional language, but the program neighborhoods are finite
and the test sets actually use program expressions instead of simple data values.
We have also proposed a test-generation method based on metacomputation
(used for program inversion) [9], which is more practically oriented, but without
any formal adequacy guarantees.

The literature on program testing techniques is too big to review here. We
just note several methods, which — similarly to ours — produce finite adequate
test sets?] for restricted classes of programs:

— the already discussed work of Tsichritzis [14] — primitive recursive programs
on natural numbers without nested loops;

— programs computing multivariate polynomials of a known degree with inte-
ger coefficients [4,6];

— programs computing multivariate polynomials of unknown degree with nat-
ural coefficients [5}11].

7 Conclusions and Future Work

We have presented a class of simple programs operating on binary trees, which
can be split into subclasses, such that for each subclass there exists a finite
adequate test set. As a direct consequence, equivalence of programs in the whole
class is decidable. The definition of the subclasses is made possible by converting
programs into a normal form with specific shape, through supercompilation-like
transformations.

The practical application of the equivalence decision procedure is hindered
by its superexponential complexity. We have already mentioned some ideas that
might help reduce this complexity, but more work is needed to flesh them out.
The size of the test set (which is the cause for the decision procedure complexity)
is also a hurdle for the practical application of the test generation method. A

% Possibly for a slightly different definition of “adequate”

Simple Programs on Binary Trees — Testing and Decidable Equivalence 137

potential approach for reducing the test set size, which we plan to explore, is
to use trees with variables as test inputs and outputs. Another problem with
applying the method for practical program testing is the use of a very restricted
language, which does not by itself permit writing many interesting programs.
One possibility is to study the use of the language of simple programs discussed
here as the core of a Turing-complete language. For example, we can use a simple
imperative language with while loops, similar to the ones used by Jones [7] and
in our earlier work [8], with the language of simple programs being embedded as
a sublanguage of expressions. The key research problem will be how to extend
the test generation method from expressions to programs in the full language.

Another interesting problem, which we may consider in the future, is the more
precise characterization of the expressiveness of the class of simple programs we
have studied.

Acknowledgments I would like to thank Alexei Lisitsa for comments that
helped improve the presentation of this article.

References

1. Abramov, S.M.: Metacomputation and program testing. In: Proceedings of the 1st
International Workshop on Automated and Algorithmic Debugging. pp. 121-135.
Link6ping University, Linkoping, Sweden (1993)

2. Backus, J.: Can programming be liberated from the von Neumann style? A func-
tional style and its algebra of programs. Communications of the ACM 21(8), 613—
641 (Aug 1978)

3. Budd, T.A., Angluin, D.: Two notions of correctness and their relation to testing.
Acta Informatica 18(1), 31-45 (Nov 1982)

4. DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing.
Information Processing Letters 7(4), 193-195 (1978)

5. Govindarajan, K.: A note on polynomials with non-negative integral coefficients.
Tech. rep., Department of Computer Science, State University of New York at
Buffalo (1995)

6. Howden, W.E.: Algebraic program testing. Acta Informatica 10(1), 53-66 (1978),
http://dx.doi.org/10.1007/BF00260923

7. Jones, N.D.: Computability and Complexity from a Programming Perspective.
Foundations of Computing, MIT Press, Boston, London, 1 edn. (1997)

8. Krustev, D.: A simple supercompiler formally verified in Coq. In: Nemytykh, A.P.
(ed.) Proceedings of the Second International Workshop on Metacomputation in
Russia (META 2010). pp. 102-127 (2010)

9. Krustev, D.: A metacomputation toolkit for a subset of F# and its application to
software testing. In: Klimov, A.V., Romamenko, S.A. (eds.) Third International
Valentin Turchin Workshop on Metacomputation. pp. 165-183 (2012)

10. Krustev, D.N.: Software test generation using program skeletons. PhD thesis Tech-
nical Report PRE 23/01, Wroclaw Polytechnic, Wroclaw, Poland (2001)

11. Maolepszy, J.: Reconstruction of extended polynomials from the finite number
of examples. Tech. rep., Jagiellonian University, Institute Of Computer Science,
Krakow (1996)

http://dx.doi.org/10.1007/BF00260923

138

12.

13.

14.

15.

16.

Dimitur Krustev

OEIS: sequence A003095. https://oeis.org/A003095, [Online; accessed 2016-05-
08]

Sgrensen, M.H., Gliick, R.: Introduction to supercompilation. In: Hatcliff, J., Mo-
gensen, T., Thiemann, P. (eds.) Partial Evaluation: Practice and Theory. Lecture
Notes in Computer Science, vol. 1706, pp. 246-270. Springer-Verlag (1999)
Tsichritzis, D.: The equivalence problem of simple programs. J. ACM 17(4), 729—
738 (1970)

Turchin, V.: The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems 8(3), 292-325 (July 1986)

Wadler, P.: Deforestation: Transforming programs to eliminate trees. Theor. Com-
put. Sci. 73(2), 231-248 (1990)

https://oeis.org/A003095

	Introduction
	Simple Programs on Binary Trees
	Program Normal Forms
	Finite Adequate Test Sets for Simple Programs
	Some Notions Related to Program Testing
	Subclasses of Simple Programs as Program Neighborhoods
	Tree Decomposition
	Existence of Adequate Test Sets
	Test Set Optimality

	Decidability of Equivalence of Simple Programs
	Related Work
	Conclusions and Future Work

