
Complexity of Turchin’s Relation for
Call-by-Name Computations

(Extended Abstract)

Antonina Nepeivoda
a nevod@mail.ru

Program Systems Institute of Russian Academy of Sciences?

Pereslavl-Zalessky, Russia

Abstract. Supercompilation is a program transformation technique first
described by V.F. Turchin in the 1970s. In supercompilation, Turchin’s
relation on call-stack configurations is used both for call-by-value and
call-by-name semantics as a whistle. We give a formal grammar model of
call-by-name stack behaviour and find the worst-case number of driving
steps before the whistle using Turchin’s relation is blown.

1 Introduction

Supercompilation is a program transformation method based on fold/unfold op-
erations [2, 12, 14]. Given a program and its parametrized input configuration,
a supercompiler partially unfolds the process tree of the program on the input
configuration. Then it tries to fold the tree back into a graph, which presents
the residual program. In general case, the process tree may be infinite. Thus, the
following question appears: when is it reasonable to stop the unfolding in order
to avoid going into an infinite loop?

One of the ways to solve this problem is based on “configuration similarity”
relations. If a path in the tree contains two configurations, the latter of which
resembles the former, that may be a sign that the path represents an unfolded
loop. Thus, when a supercompiler finds two such configurations, it terminates
unfolding of the path where they appear.

We recall an important relation property used for termination [5].

Definition 1 Given a set T of terms and a set S of sequences of the terms from
T , relation R ⊂ T × T is called a well binary relation with respect to set S, if
every sequence {Φn} ∈ S such that ∀i, j(i < j ⇒ (Φi, Φj) /∈ R) is finite.

A sequence {Φn} satisfying the property ∀i, j(i < j ⇒ (Φi, Φj) /∈ R) is called
a bad sequence with respect to R.

? The reported study was partially supported by RFBR, research project No. 14-
07-00133, and Russian Academy of Sciences, research project No. AAAA-A16-
116021760039-0.

160 Antonina Nepeivoda

So, a well binary relation is “a well quasi-order without the order” (i. e., it is
not necessarily transitive).

Any relation guaranteeing termination of the unfolding of a process tree must
be a well binary relation with respect to the set of the traces generated in the
tree. The relation most widely used for this aim, the homeomorphic embedding
[1,5,10], is well binary with respect to arbitrary term sequences [4]. Some other
relations used for termination in program transformations1 are not well binary
with respect to arbitrary term sequences. However, they are well binary with
respect to the term sequences that can be generated on any computation path.
In order to study termination properties of such relations, one must consider
them together with their domain. Hence, the usual way of reasoning about the
well-binariness of a relation as in [6]2 meets a couple of problems.

For Turchin’s relation, well-binariness of which also can be proved only with
respect to computation paths that appear during unfolding. That relation on
call-stack configurations was the first well binary relation used for trace termi-
nation [14] (1986). Although Turchin’s relation is a useful tool that helps to
solve both termination and generalization problems [16], the proof of its well-
binariness given by V. Turchin in [16] was presented in a semi-formal way. This
work presents a formal approach to the theorem for computations in the call-
by-name semantics. We introduce a notion of a multi-layer prefix grammar3.
Elements of traces generated by such a grammar are models of call-stack con-
figurations on computation paths in the call-by-name semantics. Based on the
formalization, we could give a constructible proof of Turchin’s theorem for the
grammars being introduced. The constructible proof allowed us to find the upper
bound on the bad sequence length with respect to Turchin’s relation. The upper
bound is Ackermanian.

In Section 2, we give an example showing how Turchin’s relation can be
efficiently used as a whistle. In Section 3 we give the formal definition for a class
of grammars that model call stack behaviour for call-by-name computations. In
Section 4 we very briefly show how such grammars can be used for modelling
the call stack behaviour of programs in a simple functional language. Finally, in
Section 5 we refine the definition of Turchin’s relation for the new class of the
grammars and state the result on the upper bound.

2 Turchin’s Relation: an Example

The following program computes the sum of the squares starting from n down
to 1 in a straightforward way.

1 Among them is the relation used in supercompiler SCP4 [7] and the relation used in
higher-order supercompiler HOSC [3].

2 Including the “minimal bad sequence” method or methods using infinite Ramsey
theorem.

3 A precise description of the multi-layer grammars and their connection to call-stack
configurations will be published in [9].

Complexity of Turchin’s Relation for Call-by-Name Computations 161

Example 1

A program computing
∑n

k=1 k
2

Start: s(x);

s(0) = 0;
s(x + 1) = a(m(x + 1, x + 1), s(x));

a(0, y) = y;
a(x + 1, y) = a(x, y) + 1;

m(0, y) = 0;
m(x + 1, y) = a(y,m(x, y));

When using a “core” homeomorphic embedding whistle, a supercompiler gen-
erates the residual program which repeats the initial program modulo renaming.

The program generated by a supercompiler which uses the composition of
Turchin’s relation and homeomorphic embedding as a whistle, is below.

Example 2

Residual program computing
∑n

k=1 k
2

when Turchin’s relation is used

Start: f(x, x, x);

f(0, 0, 0) = 0;
f(0, 0, x + 1) = f(x, x, x) + 1;
f(0, x + 1, y) = f(y, x, y) + 1;
f(x + 1, y, z) = f(x, y, z) + 1;

The program given in Example 2 is more efficient than the initial one given
in Example 1: on every step except the very last it adds 1 to the result, thus
avoiding “zero” steps such as m(0, y) = 0; or a(0, y) = y;. What properties of
the refined whistle made this result possible?

The part of the process tree of the program in Example 1 is shown in Figure 1.
When we use the homeomorphic embedding relation as a whistle when driving
the initial configuration s(x) to s(x1 + 1), the whistle is blown immediately
after the substitution of the narrowing x → x + 1 to the right-hand side of the
definition s(x+ 1) = a(m(x+ 1, x+ 1), s(x)) because the subterm s(x1) repeats
the initial configuration modulo the variables’ names.

After the generalization to let z = s(x1) in a(m(x1 + 1, x1 + 1), z), the
process tree of the program is unfolded until the narrowing x1 → x2 + 1 is done.
Then the term a(a(x2,m(x2 + 1, x2 + 2)) + 1, z) + 1, which is the result of the
substitution of the narrowing in the term a(a(x1,m(x1, x1 + 1)), z) + 1, embeds
the parent term or its ancestor a(m(x1+1, x1+1), z) (depending on the strategy
of a supercompiler). The msg for both the pairs is a(u, z). That is the cause why
the residual program coincides with the one given in Example 1.

As opposed to the homeomorphic embedding relation, Turchin’s relation con-
siders only flat call-stack structure, ignoring all the passive data. In Figure 1,

162 Antonina Nepeivoda

0

Term: s(x)

Full stack: out := s (x)

Stack as a word: s

x=0oo

x=x1+1��
Term: a(m(x1 + 1, x1 + 1), s(x1))

Full stack: z0 := m (x1 + 1, x1 + 1)

out := a (z0, s(x1))

Stack as a word: ma

��
Term: a(a(x1 + 1,m(x1, x1 + 1)), s(x1))

Full stack: z1 := a (x1 + 1,m(x1, x1 + 1)),

out := a (z1, s(x1))

Stack as a word: aa

��
Term: a(a(x1,m(x1, x1 + 1)) + 1,

s(x1))

Full stack: out := a (a(x1,m(x1, x1 + 1)) + 1,

s(x1))
Stack as a word: a

��

a(m(0, 1), s(0)) + 1

Term: a(a(x1,m(x1, x1 + 1)),
s(x1)) + 1

Full stack: z2 := a (x1,m(x1, x1 + 1)),

out := a (z2, s(x1))

Stack as a word: aa

x1=0oo

x1=x2+1
��

Term: a(a(x2,m(x2 + 1, x2 + 1 + 1)) + 1,
s(x2 + 1)) + 1

Full stack: out := a (a(x2,m(x2 + 1, x2 + 1 + 1)) + 1,

s(x2 + 1))
Stack as a word: a

Fig. 1. A fragment of the process tree for the program of Example 1

the call-stack configurations are presented in the two forms: the full form that
is constructed while interpreting the configuration, and the “word” form which
contains only the names of the functions in the call-stack. Turchin’s relation op-
erates with the “word” forms. Namely, it checks whether the two “word forms”
of the call stacks ∆1 and ∆2 on the path can be split into parts [Top], [Middle],
and [Context] such that ∆1 = [Top][Context], ∆2 = [Top][Middle][Context] and
the part [Context] is never changed on the path segment starting at ∆1 and
ending at ∆2 (as it is shown in Figure 2).

Looking back to Figure 1, we can see that the first two configurations satisfy-
ing Turchin’s relation are a(a(x1+1,m(x1, x1+1)), s(x1)) and a(a(x1,m(x1, x1+
1)), s(x1))+1 (whose call-stacks in the “word form” look as aa). They are gener-
alized by the most-specific generalization to a(a(z,m(x1, x1 + 1)), s(x1)), which
is much more specific than a(u, z). We can notice that these two configurations

Complexity of Turchin’s Relation for Call-by-Name Computations 163

Top Context

. Context

Top Middle Context

Fig. 2. Turchin’s relation for call-stack configurations

do not satisfy the homeomorphic embedding relation, thus, when the composi-
tion of the relations is used as a whistle, another generalization is done. The
first terms satisfying the both relations are a(a(x1,m(x1, x1 + 1)) + 1, s(x1))
and a(a(x2,m(x2 + 1, x2 + 1 + 1)) + 1, s(x2 + 1)) + 1. They are generalized
to a(a(u,m(w,w + 1)) + 1, s(w)), which is also a good generalization with the
substitutions containing no function calls. Further generalizations, which we do
not discuss there, also allows a supercompiler to do driving on the whole term
synchronously.

The examples above show that the composition of the homeomorphic em-
bedding and Turchin’s relation may be a better whistle than the homeomorphic
embedding alone. On the one hand, they consider different properties of the
configurations, which allows a supercompiler to build more specific generaliza-
tions. On the other hand, they have much in common, hence it is not likely that
their composition will generate much longer bad sequences than the homeomor-
phic embedding alone. And even if they can sometimes generate very long bad
sequences, one can have a desire that these situations will not appear too often.

3 Multi-layer Prefix Grammars

Based on the observations given in Section 2, we use the following assumptions
to construct the grammar models for programs based on the call-by-name se-
mantics.

1. A configuration can be considered as a tree of calls, and the active call stack
— as a path in the tree. We use a set of labels S with partial order / for
denoting the positions of the function calls in the tree.

2. Every call in the stack is modelled by a pair < NAME, LABEL >, where
LABEL ∈ S.

3. Every configuration is represented as a word Γ$∆ consisting of the two parts
separated by the symbol $. The structure of the active stack is placed in Γ
and is linearly ordered w.r.t. labels, the function calls in the passive part of
the configuration are placed in ∆.

Let Υ be a finite alphabet. Let S be a label set and / be a strict (non-
reflexive) partial order relation over S. We denote the labels from S by the

164 Antonina Nepeivoda

letters s, t (maybe with subscripts). Let us say that s1 is a child of s0 w.r.t.
S′ ⊆ S (denoted by s1 = child(s0)[S′]) if s0 / s1, s0 ∈ S′, s1 ∈ S′ and there is
no such s2 ∈ S′ that s0 / s2 and s2 / s1. The inverse for the child relation is the
parent relation. Given a set S′ ⊆ S and a label t ∈ S \ S′, we call t a fresh label
w.r.t. S′ if S′ contains neither descendants nor ancestors of label t4.

Henceforth, the set of finite sequences of pairs {〈a, si〉|a ∈ Υ & si ∈ S}∗
is denoted by LW(Υ,S). Elements of LW(Υ,S) are called layered words, and are
denoted by Greek capitals Γ , ∆, Φ, Ψ , Ξ, Θ. If 〈a1, s1〉 . . . 〈an, sn〉 is a layered
word, the corresponding plain word is defined as a1 . . . an.

If Φ is a layered word, |Φ| stands for the number of the pairs in Φ and Φ[i]
stands for the i-th pair. For the sake of brevity, layered word 〈a1, s0〉 . . . 〈an, s0〉
can be also written as 〈a1 . . . an, s0〉 (thus, a〈s0〉 is an equivalent form for 〈a, s0〉).

Expression Φ〈s0〉 denotes the maximal subsequence of Φ containing only the
pairs labelled with s0. The set of all labels in Φ is denoted by SΦ.

Given a label si and natural numbers K1 and K2, we define a set of layer
functions w.r.t. label si, FsiK1,K2

: LW(Υ,S) → LW(Υ,S), as a minimal set of
functions containing all compositions of K1 elementary functions, which are:

1. Append Appsj [Ψ] (where sj ∈ S, Ψ ∈ Υ ∗): given a layered word Φ, the word
Appsj [Ψ](Φ) is the word ΦΨ〈sj〉 such that sj is a child of si w.r.t. SΦ ∪{sj},
sj is fresh w.r.t. SΦ \ {si}, and |Ψ | ≤ K2.
For example, if Apps1 [g] ∈ Fs01,1 and s0 / s1, then

Apps1 [g](〈f, s0〉〈g, s1〉) = 〈f, s0〉〈g, s1〉〈g, s1〉

2. Insert Inssj [Ψ〈sk〉](where sj , sk ∈ S, Ψ ∈ Υ ∗): given Φ with a non-empty
Φ〈sj〉, where sj is a child of si w.r.t. SΦ, Inssj [Ψ〈sk〉](Φ) is the word ΦΨ〈sk〉
where |Ψ | ≤ K2 and sk is a child of si w.r.t. SΦ ∪ {sk}, sk is fresh w.r.t
SΦ \ {si} and sj is a child of sk w.r.t SΦ ∪ {sk}.
For example, if Inss1 [gf〈s2〉] ∈ Fs01,1

5 and s0 / s1, then

Inss1 [〈gf, s2〉](〈f, s0〉〈g, s1〉) = 〈f, s0〉〈g, s1〉〈gf, s2〉

The insert operation differs from the append operation only by introduction
of an unused child label sk, which marks the newly appended word Ψ .

3. Deleting Delsj (where sj ∈ S): given Φ with a non-empty Φ〈sj〉, sj =
child(si) w.r.t. SΦ, Delsj erases Φ〈sj〉 from Φ together with all Φ〈t〉 for which
sj / t.
For example, if Dels01 ∈ Fs01,1 and s0 / s01, s02 is incomparable with s01, then

Dels01(〈d, s01〉〈d, s02〉) = 〈d, s02〉

4. Copying Copysj (where sj ∈ S): given Φ with a non-empty Φ〈sj〉, sj =
child(si) w.r.t. SΦ, Copysj appends Φ〈sk〉 to Φ, where sk is a child of si w.r.t.

4 In most cases, we assume that S′ is a set of all previously used labels, hence there
is no need to write it in the square brackets in expressions like child(s0)[S′].

5 This condition implies that s2 / s1 and s0 / s2.

Complexity of Turchin’s Relation for Call-by-Name Computations 165

SΦ ∪ {sj}, sj is fresh w.r.t. SΦ \ {si}, and then it appends all subsequences
Φ〈sl〉 labelled by the children of sj and labels them by fresh children of sl
and so on until all the sequences Φ〈t〉, where sj / t, are copied exactly once.
For example, if Copys01 ∈ Fs01,1 and s0 / s01, then

Copys01(〈d, s01〉) = 〈b, s0〉〈d, s01〉〈d, s02〉,

where s02 is incomparable with s01.

Definition 2 Let us consider a tuple G = 〈Υ,S,R,FvK1,K2
, Γ0$∆0〉 where Γ0

and ∆0 are layered words over Υ × S such that for every Γ0[i] = 〈ai, si〉 and
Γ0[j] = 〈aj , sj〉, if j > i then sj / si or sj = si, $ is a special symbol, $ /∈ Υ , and
FvK1,K2

is a finite set of layer function forms where v runs over the label set S.
For every G-word Γ$∆, where Γ and ∆ are words in LW(Υ,S), we call Γ the
visible layer, and we call ∆ the invisible layer of Γ$∆.

Let all rewriting rules from R have one of the following forms:

– Simple rule:
Ξ〈a, si〉Θ$Ψ → ΦΘ$F si(Ψ),

where all the letters of Φ are labelled either by si or by fresh descendants of
si, F

si ∈ Fsi .
– Pop rule: for Ψ〈sj〉 — the maximal subsequence of Ψ marked by some sj =

child(si) ∈ S,
Ξ〈a, si〉Θ$Ψ → Ψ〈sj〉ΦΘ$F si(Ψ),

where all the letters of Φ are labelled either by si or by fresh descendants of
si, F

si ∈ Fsi . In a pop rule, we may specify sj, but there are no ways to
specify Ψ〈sj〉.

Such a grammar G is called a multi-layer prefix grammar. K2 is called the
maximal rewrite depth. A sequence of G-words starting at Γ0$∆0 that are trans-
formed by the rules from R is called a trace of G.

If any rule of such a grammar changes only one letter of the visible layer,
then the multi-layer prefix grammar is alphabetic.

Words on the traces generated by the alphabetic multi-layer grammars are
models of the call-stack configurations that appear on the path of the process tree
during the call-by-name computations. Some pointers to a way for constructing
these models explicitly are given in the next section.

4 Modelling Call Stack Behaviour by Multi-layer
Grammars

We borrow the notions of f -function and g-function from [11] and use them in the
following sense. An f -function is a function whose definition consists of a one rule
with the trivial patterns (e. g., if h1 is defined as h1 (x1 , x2) = x2 + h2 (x1 + 1)

166 Antonina Nepeivoda

then h1 is an f -function). A g-function is a function with non-trivial patterns in
the definition (e. g., h2 (x + 1) = h2 (x) + h2 (x) is a definition of the g-function).

In order to get a grammar from a program, we treat every configuration
generated by the unfolding as a tree, whose nodes are named by function or
constructor names and leaves contain no function calls. First, we mark every
function name in the tree by a superscript depending on the state of the function
call. If the call is ready to be unfolded without unfolding of other calls, the
function name is marked as “ready” (by + in the superscript). Otherwise, the
function name is marked as “unready”. Hence, the call names of all f -functions
are always marked as “ready”, while the call names of g-functions are marked
as “ready” if their pattern can be matched without evaluating another call6.

Then we delete all the nodes containing static data7. The remaining nodes
are given the layer labels. If some node T is a descendant of a node W , the label
of T is greater than the label of W . Otherwise the labels are incomparable.

Finally, we find all the nodes containing the unready call names with a single
child. The child of such a node is given the label of the node. And then, all the
nodes with the same labels are merged: data from the ancestor nodes are placed
in the merged node after the data from their descendants.

The resulting tree is a tree form of the corresponding layered word.

Example 3 Given the term a(m(x1 + 1 , x1 + 1), s(x1)), we transform it to a
layered word. All the steps of the transformation are given in Figure 3.

First, we mark the calls as “ready”(with + in the superscript) and “un-
ready”(with − in the superscript), and delete the nodes with the static data.
The only function call in the configuration which is ready to be unfolded without
unfolding is the outermost call of m. The call s(x1) requires unfolding (which
generates the narrowing on x1), but does not require unfolding of other calls, so
it is also marked as ready. The remaining call a is marked as unready.

Then we assign the layer labels in the resulting tree of the marked call names.
The tree below shows that s0 / s01, s0 / s02.

Finally, the nodes containing the names of the calls in the active stack are
extracted. These names together with the node labels take a place in the visible
part of the layered word; data from the remaining node in the tree take a place
in the invisible part.

6 There we always can determine all the calls that are ready to be unfolded due
to simplicity of the patterns. In languages with complex pattern matching (e. g.,
Refal [15]), that can be done only if one knows the strategy of the pattern matching
applied in the interpreter.

7 In some cases, this action can transform the tree into a forest. For example, that can
happen if the configuration is cons(h1 (x), cons(h2 (x),Nil)). To avoid these cases,
we always assume that the transformed tree has a root, but the root is a “virtual”
function call, which is always present in the G-word corresponding to the tree and
is denoted by $.

Complexity of Turchin’s Relation for Call-by-Name Computations 167

a(. . . , . . .)
uu ((

m(. . . , . . .)
��))

s(. . .)

��
+1
��

+1
��

x1

x1 x1

s0 : a−

vv ��
s01 : m+ s02 : s+

s0 : a−

vv ��
s01 : m+ s02 : s+

The initial term
Call names are marked,
static data are deleted,
layer labels are assigned

The active part
is extracted

Fig. 3. Steps transforming a(m(x1 + 1 , x1 + 1), s(x1)) from a tree to layered word
〈m, s01〉〈a, s0〉$〈s, s02〉

5 Turchin’s Relation and Multi-Layer Grammars

Definition 3 Let G be a multi-layer prefix grammar with the set of rules that
rewrite N letters in the visible layer. Given a trace {Γk$∆k} and its segment
[i, j], suffix Θ of Φi is called a permanently stable suffix w.r.t. the segment [i, j]
if all the words Γk$∆k, i ≤ k < j, are of the form ΦkΘ$∆k where Φk is a layered
word with the length not less than N , and Γj is of the form ΦjΘ, where Φj may
be Λ 8. If j is not bounded, Θ is called a permanently stable suffix w.r.t. i.

Informally, a permanently stable suffix is a suffix of the visible layer that is
never changed in the trace segment starting at the i-th and ending by the j-th
G-word in the trace. In the terms of call stack behaviour, a permanently stable
suffix corresponds to an unchanged context of the computation.

Definition 4 Let G = 〈Υ,S, R,FvK1,K2
, Γ0$∆0〉 be a multi-layer prefix gram-

mar. Given two G-words Ξi = Γi$∆i, Ξj = Γj$∆j in a trace {Γk$∆k}, we
say that the words form a Turchin pair (denoted as Ξi � Ξj) if Γi = ΦΘ0,
Γj = Φ′ΨΘ0, Φ is equal to Φ′ as a plain word (up to the layer labels) and the
suffix Θ0 is permanently stable w.r.t. segment [i, j].

Lemma 1 Let us consider the Ackermann function defined as follows:

BK(M, 0) = 1
BK(0, N) = N + 1
BK(M,N) = BK(M − 1, BK(M,N − 1) ∗K)

An alphabetic multi-layer grammar G can generate bad sequences w.r.t. Turchin’s
relation not longer than BK(M,N), where K is the maximal rewrite depth of G,
M is the number of rules in the set of rewriting rules of G and N is the total
length of the initial word in the grammar.

8 In the case of alphabetic prefix grammars, when N = 1, the first condition implies
the second.

168 Antonina Nepeivoda

Example 4 A program that generates traces which are Ackermanian bad se-
quences w.r.t. Turchin’s relation can be as follows. The input point of the program
is A(< N , b(B(< 1 , 0 >)) >) (where N is an arbitrary fixed natural number).

A(< x1 + 1 , x2 >) = a(A(< x1 , x2 >));
A(< 0 , x2 >) =< x2 + 1 , 0 >;
a(< x1 + 1 , x2 >) = x1 ;
B(< x1 + 1 , x2 >) = c(c(< x1 + 1 , x2 >));
b(< x1 + 1 , x2 >) = x2 ;
c(< x1 + 1 , x2 >) =< B(b(< x1 , x2 >)) + 1 , c(c(< x1 , x2 >)) >;
c(< 0 , x2 >) =< B(b(< 1 , 0 >)) + 1 , c(c(< 0 , 0 >)) >;

The program never stops and its call-stack configurations form bad sequences of
the exponential tower length (in N) with respect to Turchin’s relation (that is, of

the length O(2
2...

2
}
N

)). However, with respect to the homeomorphic embedding
relation over the entire terms, a computation of this program for every N > 0 is
terminated on the 5 +N -th step.

6 Conclusion

Turchin’s relation for call-by-name computations is a strong and consistent
branch termination criterion, which finds pairs of embedded terms on the trace
of every infinite computation. It allows a program transformation tool to con-
struct very long configuration sequences (i. e., traces) with no Turchin pairs in
them, and although such sequences appear in real program runs almost never,
the computational power of Turchin’s relation shows that the relation can be
used to solve some complex problems. In fact, the Ackermanian upper bound on
the bad sequence length is rather a “good” property indicating that the relation
is non-trivial, than a “bad” one indicating that the whistle using the relation
will be blown too late. Example 4 shows a program that generates very long bad
sequences. But the program contains an implicit definition of the Ackermanian
function. From the practical point of view, such programs are very rare. If a
program does not generate such complex structures, its call-stack configuration
structures considered by Turchin’s relation can be modelled by a grammar be-
longing to a smaller class than the whole class of the multi-layer prefix grammars.
E.g., for the call-by-value semantics, this class coincides with the regular gram-
mars [8]. Primitively recursive functions also cannot generate too complex stack
structures: they are even incapable to compute such fast-growing functions as
the Ackermanian function. Moreover, the homeomorphic embedding can produce
even longer bad sequences than Turchin’s relation [13, 17]. Thus, the property
being described in this paper is not a thing Turchin’s relation must be blamed
of.

Complexity of Turchin’s Relation for Call-by-Name Computations 169

References

1. Albert, E., Gallagher, J., Gomes-Zamalla, M., Puebla, G.: Type-based homeomor-
phic embedding for online termination. Journal of Information Processing Letters
109(15), 879–886 (2009)

2. Hamilton, G.W., Jones, N.D.: Distillation with labelled transition systems, pp.
15–24. IEEE Computer Society Press (2012)

3. Klyuchnikov, I.: Inferring and proving properties of functional programs by means
of supercompilation. Ph. D. Thesis (in Russian) (2010)

4. Kruskal, J.: Well-quasi-ordering, the tree theorem, and vazsonyi’s conjecture.
Transactions of the American Mathematical Society 95, 210–225

5. Leuschel, M.: Homeomorphic Embedding for Online Termination of Symbolic
Methods, Lecture Notes in Computer Science, vol. 2566, pp. 379–403. IEEE Com-
puter Society Press (2002)

6. Nash-Williams, C.S.J.A.: On well-quasi-ordering infinite trees. Proceedings of
Cambridge Philosophical Society 61, 697–720 (1965)

7. Nemytykh, A.P.: The Supercompiler Scp4: General Structure. URSS, Moscow
(2007), (In Russian)

8. Nepeivoda, A.: Turchin’s relation and subsequence relation in loop approximation.
In: PSI 2014. Ershov Informatics Conference. Poster Session. vol. 23, pp. 30–42.
EPiC Series, EasyChair (2014)

9. Nepeivoda, A.: Turchin’s relation for call-by-name computations: a formal ap-
proach. (to appear) (2016)

10. Sørensen, M.H., Glück, R.: An algorithm of generalization in positive supercompi-
lation. In: Proceedings of ILPS’95, the International Logic Programming Sympo-
sium. pp. 465–479. MIT Press (1995)

11. Sørensen, M.: Turchin’s supercompiler revisited. Ms.Thesis (1994)
12. Sørensen, M., Glück, R., Jones, N.D.: A positive supercompiler. Journal of Func-

tional Programming 6, 811–838 (1996)
13. Touzet, H.: A characterisation of multiply recursive functions with higman’s

lemma. Information and Computation 178, 534–544 (2002)
14. Turchin, V.F.: The concept of a supercompiler. ACM Transactions on Program-

ming Languages and Systems 8(3), 292–325 (1986)
15. Turchin, V.F.: Refal-5, Programming Guide and Reference Manual. New Eng-

land Publishing Co., Holyoke, Massachusetts (1989), electronic version:http://
www.botik.ru/pub/local/scp/refal5/

16. Turchin, V.: The algorithm of generalization in the supercompiler. Partial Evalu-
ation and Mixed Computation pp. 341–353 (1988)

17. Weiermann, A.: Phase transition thresholds for some friedman-style independence
results. Mathematical Logic Quarterly 53, 4–18 (2007)

http://www.botik.ru/pub/local/scp/refal5/
http://www.botik.ru/pub/local/scp/refal5/

	Introduction
	Turchin's Relation: an Example
	Multi-layer Prefix Grammars
	Modelling Call Stack Behaviour by Multi-layer Grammars
	Turchin's Relation and Multi-Layer Grammars
	Conclusion

