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Preface

The Fifth International Valentin Turchin Workshop on Metacomputation,
META 2016, was held on June 27 – July 1, 2016 in Pereslavl-Zalessky. It be-
longs to a series of workshops organized biannually by Ailamazyan Program
Systems Institute of Russian Academy of Sciences and Ailamazyan University
of Pereslavl.

The workshops are devoted to the memory of Valentin Turchin, a founder
of metacomputation, the area of computer science dealing with manipulation of
programs as data objects, various program analysis and transformation tech-
niques.

The topics of interest of the workshops include supercompilation, partial eval-
uation, distillation, mixed computation, generalized partial computation, slicing,
verification, mathematical problems related to these topics, their applications,
as well as cross-fertilization with other modern research and development direc-
tions.

Traditionally each of the workshops starts with a Valentin Turchin memorial
session, in which talks about his personality and scientific and philosophical
legacy are given.

The papers in these proceedings belong to the following topics.

Valentin Turchin memorial

– Robert Glück, Andrei Klimov: Introduction to Valentin Turchin’s Cybernetic
Foundation of Mathematics

Invited Speaker Neil D. Jones

– Neil D. Jones: On Programming and Biomolecular Computation

– Daniil Berezun and Neil D. Jones: Working Notes: Compiling ULC to Lower-
level Code by Game Semantics and Partial Evaluation

Partial evalatuation

– Robert Glück: Preliminary Report on Polynomial-Time Program Staging by
Partial Evaluation

Program slicing

– Husni Khanfar and Björn Lisper: Enhanced PCB-Based Slicing

Distillation

– Venkatesh Kannan and G. W. Hamilton: Distilling New Data Types
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Program Verification

– Andrew Mironov: On a Method of Verification of Functional Programs

Proving Program Equivalence

– Sergei Grechanik: Towards Unification of Supercompilation and Equality Sat-
uration

– Dimitur Krustev: Simple Programs on Binary Trees – Testing and Decidable
Equivalence

Supercompilation

– Dimitur Krustev: A Supercompiler Assisting Its Own Formal Verification
– Robert Glück, Andrei Klimov, and Antonina Nepeivoda: Non-Linear Con-

figurations for Superlinear Speedup by Supercompilation
– Antonina Nepeivoda: Complexity of Turchin’s Relation for Call-by-Name

Computations

Derivation of parallel programs

– Arkady Klimov: Derivation of Parallel Programs of Recursive Doubling Type
by Supercompilation with Neighborhood Embedding

Algorithms

– Nikolay Shilov: Algorithm Design Patterns: Programming Theory Perspec-
tive

The files of the papers and presentations of this and the previous workshops
as well as other information can be found at the META sites:

– META 2008: http://meta2008.pereslavl.ru/

– META 2010: http://meta2010.pereslavl.ru/

– META 2012: http://meta2012.pereslavl.ru/

– META 2014: http://meta2014.pereslavl.ru/

– META 2016: http://meta2016.pereslavl.ru/

May 2016 Andrei Klimov
Sergei Romanenko

http://meta2008.pereslavl.ru/
http://meta2010.pereslavl.ru/
http://meta2012.pereslavl.ru/
http://meta2014.pereslavl.ru/
http://meta2016.pereslavl.ru/
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Working Notes: Compiling ULC to Lower-level
Code by Game Semantics and Partial Evaluation

Daniil Berezun1 and Neil D. Jones2

1 JetBrains and St. Petersburg State University (Russia)
2 DIKU, University of Copenhagen (Denmark)

Abstract. What: Any expression M in ULC (the untyped λ-calculus)
can be compiled into a rather low-level language we call LLL, whose pro-
grams contain none of the traditional implementation devices for func-
tional languages: environments, thunks, closures, etc. A compiled pro-
gram is first-order functional and has a fixed set of working variables,
whose number is independent of M . The generated LLL code in effect
traverses the subexpressions of M .

How: We apply the techniques of game semantics to the untyped λ-
calculus, but take a more operational viewpoint that uses much less
mathematical machinery than traditional presentations of game seman-
tics. Further, the untyped lambda calculus ULC is compiled into LLL by
partially evaluating a traversal algorithm for ULC.

1 Context and contribution

Plotkin posed the problem of existence of a fully abstract semantics of PCF [17].
Game semantics provided the first solution [1–3, 9]. Subsequent papers devise
fully abstract game semantics for a wide and interesting spectrum of program-
ming languages, and further develop the field in several directions.

A surprising consequence: it is possible to build a lambda calculus interpreter
with none of the traditional implementation machinery: β-reduction; environ-
ments binding variables to values; and “closures” and “thunks” for function calls
and parameters. This new viewpoint on game semantics looks promising to see
its operational consequences. Further, it may give a new line of attack on an old
topic: semantics-directed compiler generation [10, 18].

Basis: Our starting point was Ong’s approach to normalisation of the simply
typed λ-calculus(henceforth called STLC). Paper [16] adapts the game semantics
framework to yield an STLC normalisation procedure (STNP for short) and its
correctness proof using the traversal concept from [14,15].

STNP can be seen as in interpreter; it evaluates a given λ-expression M by
managing a list of subexpressions of M , some with a single back pointer. These
notes extend the normalisation-by-traversals approach to the untyped λ-calculus,
giving a new algorithm called UNP, for Untyped Normalisation Procedure. UNP
correctly evaluates any STLC expression sans types, so it properly extends STNP
since ULC is Turing-complete while STLC is not.
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Plan: in these notes we start by describing a weak normalisation procedure.
A traversal-based algorithm is developed in a systematic, semantics-directed way.
Next step: extend this to full normalisation and its correctness proof (details
omitted from these notes). Finally, we explain briefly how partial evaluation can
be used to implement ULC, compiling it to a low-level language.

2 Normalisation by traversal: an example

Perhaps surprisingly, the normal form of an STLC λ-expression M may be found
by simply taking a walk over the subexpressions of M . As seen in [14–16] there
is no need for β-reduction, nor for traditional implementation techniques such
as environments, thunks, closures, etc. The “walk” is a traversal: a sequential
visit to subexpressions of M . (Some may be visited more than once, and some
not at all.)

A classical example; multiplication of Church numerals3

mul = λm.λn.λs.λz.m(ns)z

A difference between reduction strategies: consider computing 3∗2 by evaluating
mul 3 2. Weak normalisation reduces mul 3 2 only to λs.λz.3(2s)z but does no
computation under the lambda. On the other hand strong normalisation reduces
it further to λs.λz.s6z.

A variant is to use free variables S,Z instead of the bound variables s, z, and
to use mul′ = λm.λn.m(nS)Z instead of mul. Weak normalisation computes all
the way: mul′ 3 2 weakly reduces to S6Z as desired. More generally, the Church-
Turing thesis holds: a function f : Nn ⇀ N is partial recursive (computable) iff
there is a λ-expression M such that for any x1, . . . , xn, x ∈ N

f(x1, . . . , xn) = x ⇔ M(Sx1Z) . . . (SxnZ) weakly reduces to SxZ

The unique traversal of 3 (2S)Z visits subexpressions of Church numeral 3
once. However it visits 2 twice, since in general x ∗ y is computed by adding y
together x times. The weak normal form of 3 (2S)Z is S6Z: the core of Church
numeral 6.

Figure 1 shows traversal of expression 2 (2S)Z in tree form4. The labels 1:,
2: etc. are not part of the λ-expression; rather, they indicate the order in which
subexpressions are traversed.

3 The Church numeral of natural number x is x = λs.λz.sxz. Here sx =
s(s(. . . s(z) . . .)) with x occurrences of s, where s represents “successor” and z
represents “zero”.

4 Application operators @i have been made exlicit, and indexed for ease of reference.
The two 2 subtrees are the “data’; their bound variables have been named apart to
avoid confusion. The figure’s “program” is the top part ( S)Z.
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Computation by traversal can be seen as a game

The traversal in Figure 1 is a game play between program λmλn.(m@ (n@S))@Z
and the two data values (m,n each have λ-expression 2 as value).

Informally: two program nodes are visited in steps 1, 2; then data 1’s leftmost
branch is traversed from node λs1 until variable s1 is encountered at step 6.
Steps 7-12: data 2’s leftmost branch is traversed from node λs2 down to variable
s2, after which the program node S is visited (intuitively, the first output is
produced). Steps 13-15: the data 2 nodes @6 and s2 are visited, and the program:
it produces the second output S. Steps 16, 17: z2 is visited, control is finished
(for now) in data 2, and control resumes in data 1.

Moving faster now: @4 and the second s1 are visited; data 2 is scanned for a
second time; and the next two output S’s are produced. Control finally returns
to z1. After this, in step 30 the program produces the final output Z.

DATA 1
⇓

︷ ︸︸ ︷

λs13:

?
λz14:

?
@35:

?

�
��+

s16:
@4 : 17

?

�
��+

s118:
z1 : 29





⇐ DATA 2

λs28, 20:

?
λz29, 21:

?
@510, 22:

?

�
��+

s211, 23:
@6 : 13, 25

?

�
��+

s214, 26:
z2 : 16, 28

PROGRAM ⇒





1: @1

�
�
�+

@
@R

Z : 302: @2

������������

HHHj
7, 19: @7

�
�	
HHj S : 12, 15, 24, 27

Fig. 1. Syntax tree for mul 2 2S Z = 2(2S)Z. (Labels show traversal order.)
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Which traversal? As yet this is only an “argument by example”; we have
not yet explained how to choose among all possible walks through the nodes of
2(2S)Z to find the correct normal form.

3 Overview of three normalisation procedures

3.1 The STNP algorithm

The STNP algorithm in [16] is deterministic, defined by syntax-directed inference
rules.

The algorithm is type-oriented even though the rules do not mention types:
it requires as first step the conversion from STLC to η-long form. Further, the
statement of correctness involves types in “term-in-context” judgements Γ `
M : A where A is a type and Γ is a type environment.

The correctness proof involves types quite significantly, to construct program-
dependent arenas, and as well a category whose objects are arenas and whose
morphisms are innocent strategies over arenas.

3.2 Call-by-name weak normalisation

We develop a completely type-free normalisation procedure for ULC.5 Semantics-
based stepping stones: we start with an environment-based semantics that resem-
bles traditional implementations of CBN (call-by-name) functional languages.
The approach differs from and is simpler than [13].

The second step is to enrich this by adding a “history” argument to the
evaluation function. This records the “traversal until now”. The third step is
to simplify the environment, replacing recursively-defined bindings by bindings
from variables to positions in the history. The final step is to remove the envi-
ronments altogether.

The result is a closure- and environment-free traversal-based semantics for
weak normalisation.

3.3 The UNP algorithm

UNP yields full normal forms by “reduction under the lambda” using head linear
reduction [7, 8]. The full UNP algorithm [4] currently exists in two forms:

– An implementation in haskell; and

– A set of term rewriting rules. A formal correctness proof of UNP is nearing
completion, using the theorem prover COQ [4].

5 Remark: evaluator nontermination is allowed on an expression with no weak normal
form.
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4 Weak CBN evaluation by traversals

We begin with a traditional environment-based call-by-name semantics: a reduc-
tion-free common basis for implementing a functional language. We then elimi-
nate the environments by three transformation steps. The net effect is to replace
the environments by traversals.

4.1 Weak evaluation using environments

The object of concern is a pair e : ρ, where e is a λ-expression and ρ is an
environment6 that binds some of e’s free variables to pairs e′:ρ′.

Evaluation judgements, metavariables and domains:

e:ρ ⇓ v Expression e in environment ρ evaluates to value v
v, e:ρ ⇓ v′ Value v applied to argument e in environment ρ gives value v′

ρ ∈ Env = V ar ⇀ Exp× Env
v ∈ V alue = {e : ρ | e does not have form (λx.e0)e1}

Note: the environment domain Env is defined recursively.

Determinism The main goal, given a λ-expression M , is to find a value v such
that M:[] ⇓ v (if it exists). The following rules may be thought of as an algorithm
to evaluate M since they are are deterministic. Determinism follows since the
rules are single-threaded: consider a goal left ⇓ right . If left has been computed
but right is still unknown, then at most one inference rule can be applied, so the
final result value is uniquely defined (if it exists).

(Lam)
λx.e:ρ ⇓ λx.e:ρ (Freevar) x free in M

x:ρ ⇓ x:[]
(Boundvar)

ρ(x) ⇓ v
x:ρ ⇓ v

Abstractions and free variables evaluate to themselves. A bound variable x is ac-
cessed using call-by-name: the environment contains an unevaluated expression,
which is evaluated when variable x is referenced.

(AP)
e1:ρ ⇓ v1 v1, e2:ρ ⇓ v

e1@e2:ρ ⇓ v

Rule (AP) first evaluates the operator e1 in an application e1@e2. The value v1
of operator e1 determines whether rule (APλ) or (APλ) is applied next.

(APλ)
e′ = λx.e′′ ρ′′ = ρ′[x 7→ e2:ρ] e′′:ρ′′ ⇓ v

e′:ρ′, e2:ρ ⇓ v

6 Call-by-name semantics: If ρ contains a binding x 7→ e′ :ρ′, then e′ is an as-yet-
unevaluated expression and ρ′ is the environment that was current at the time when
x was bound to e′.
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In rule (APλ) if the operator value is an abstraction λx.e′′:ρ′ then ρ′ is extended
by binding x to the as-yet-unevaluated operand e2 (paired with its current en-
vironment ρ). The body e′′ is then evaluated in the extended ρ′ environment.

(APλ)
e′ 6= λx.e′′ e2:ρ ⇓ e′2:ρ′2 fv(e′) ∩ dom(ρ′2) = ∅

e′:ρ′, e2:ρ ⇓ (e′@e′2):ρ′2

In rule (APλ) the operator value e′ :ρ′ is a non-abstraction. The operand e2 is
evaluated. The resulting value is an application of operator value e′ to operand
value (as long as no free variables are captured).

Rule (APλ) yields a value containing an application. For the multiplication
example, Rule (APλ) yields all of the S applications in result S@(S@(S@(S@Z))).

4.2 Environment semantics with traversal history h

Determinism implies that there exists at most one sequence of visited subex-
pressions for any e:ρ. We now extend the previous semantics to accumulate the
history of the evaluation steps used to evaluate e:ρ.

These rules accumulate a list h = [e1:ρ1, . . . , , . . . , en:ρn] of all subexpressions
of λ-expression M that have been visited, together with their environments. Call
such a partially completed traversal a history. A notation:

[e1:ρ1, . . . , en:ρn] • e:ρ = [e1:ρ1, . . . , en:ρn, e:ρ]

Metavariables, domains and evaluation judgements.

e:ρ, h ⇓ v Expression e in environment ρ evaluates to value v
v, e:ρ, h ⇓ v′ Value v applied to expression e in environment ρ gives value v′

ρ ∈ Env = V ar ⇀ Exp× Env
v ∈ V alue = {e : ρ, h | h ∈ History, e 6= (λx.e0)e1}
h ∈ History = (Exp× Env)∗

Judgements now have the form e : ρ, h ⇓ e′ : ρ′, h′ where h is the history
before evaluating e, and h′ is the history after evaluating e. Correspondingly, we
redefine a value to be of form v = e:ρ, h where e is not a β-redex.

(Lam)
λx.e:ρ, h ⇓ λx.e:ρ, h•(λx.e:ρ)

(Freevar) x free in M
x:ρ, h ⇓ x:[], h•(x:[])

(Boundvar)
ρ(x), h•(x:ρ) ⇓ v

x:ρ, h ⇓ v

(AP)
e1:ρ, h•(e1@e2, ρ) ⇓ v1 v1, e2:ρ ⇓ v

e1@e2:ρ, h ⇓ v
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(APλ)
e′ = λx.e′′ ρ′′ = ρ′[x 7→ e2:ρ] e′′:ρ′′, h′ ⇓ v

e′:ρ′, h′, e2:ρ ⇓ v

(APλ)
e′ 6= λx.e′′ e2:ρ, h

′ ⇓ e′2:ρ′2, h′2 fv(e′) ∩ dom(ρ′2) = ∅
e′:ρ′, h′, e2:ρ ⇓ (e′@e′2):ρ′2, h

′
2

Histories are accumulative It is easy to verify that h is a prefix of h′ whenever
e:ρ, h ⇓ e′,:ρ′, h′.

4.3 Making environments nonrecursive

The presence of the history makes it possible to bind a variable x not to a pair e:ρ,
but instead to the position of a prefix of history h. Thus ρ ∈ Env = V ar → N.
Domains and evaluation judgement:

e:ρ, h ⇓ v Expression e in environment ρ evaluates to value v
v, e:ρ, h ⇓ v′ Value v applied to argument e in environment ρ gives value v′

ρ ∈ Env = V ar ⇀ N
h ∈ History = (Exp× Env)∗

A major difference: environments are now “flat” (nonrecursive) since Env is no
longer defined recursively. Nonetheless, environment access is still possible, since
at all times the current history includes all previously traversed expressions.

Only small changes are needed, to rules (APλ) and (Boundvar); the remaining
are identical to the previous version and so not repeated.

(APλ)
e′ = λx.e′′ ρ′′ = ρ′[x 7→ |h|] e′′:ρ′′, h′ ⇓ v

e′:ρ′, h′, e1@e2:ρ, h ⇓ v

(Boundvar)
nth ρ(x) h = e1@e2:ρ

′ e2:ρ
′ ⇓ v

x:ρ, h ⇓ v

In rule (APλ), variable x is bound to length |h| of the history h that was current
for (e1@e2, ρ). As a consequence bound variable access had to be changed to
match. The indexing function nth : N → History → Exp × Env is defined by:
nth i [e1:ρ1, . . . , en:ρn] = ei:ρi.

4.4 Weak UNP: back pointers and no environments

This version is a semantics completely free of environments: it manipulates only
traversals and back pointers to them. How it works: it replaces an environment
by two back pointers, and finds the value of a variable by looking it up in the
history, following the back pointers.

Details will be appear in a later version of this paper
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5 The low-level residual language LLL

The semantics of Section 4.4 manipulates first-order values. We abstract these
into a tiny first-order functional language called LLL: essentially a machine lan-
guage with a heap and recursion, equivalent in power and expressiveness to the
language F in book [11].

Program variables have simple types (not in any way depending on M). A
token, or a product type, has a static structure, fixed for any one LLL program.
A list type [tau] denotes dynamically constructed values, with constructors
[] and :. Deconstruction is done by case. Types are as follows, where Token
denotes an atomic symbol (from a fixed alphabet).

tau ::= Token | (tau, tau) | [ tau ]

Syntax of LLL

program ::= f1 x = e1 ... fn x = en

e ::= x | f e

| token | case e of token1 -> e1 ... tokenn -> en

| (e,e) | case e of (x,y) -> e

| [] | case e of [] -> e x:y -> e

x, y ::= variables

token ::= an atomic symbol (from a fixed alphabet)

6 Interpreters, compilers, compiler generation

Partial evaluation (see [12]) can be used to specialise a normalisation algorithm
to the expression being normalised. The net effect is to compile an ULC expres-
sion into an LLL equivalent that contains no ULC-syntax; the target programs
are first-order recursive functional program with “cons”. Functions have only a
fixed number of arguments, independent of the input λ-expression M .

6.1 Partial evaluation (= program specialisation)

One goal of this research is to partially evaluate a normaliser with respect to
“static” input M . An effect can be to compile ULC into a lower-level language.

Partial evaluation, briefly A partial evaluator is a program specialiser, called
spec. Its defining property:

∀p ∈ Programs . ∀s, d ∈ Data . [[[[spec]](p, s)]](d) = [[p]](s, d)

The net effect is a staging transformation: [[p]](s, d) is a 1-stage computation; but
[[[[spec]](p, s)]](d) is a 2-stage computation.
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Program speedup is obtained by precomputation. Given a program p and

“static” input value s, spec builds a residual program ps
def
= [[spec]](p, s). When

run on any remaining “dynamic” data d, residual program ps computes what p
would have computed on both data inputs s, d.

The concept is historically well-known in recursive function theory, as the
S-1-1 theorem. In recent years partial evaluation has emerged as the practice of
engineering the S-1-1 theorem on real programs [12]. One application is compil-
ing. Further, self-application of spec can achieve compiler generation (from an
interpreter), and even compiler generator generation (details in [12]).

6.2 Should normalisation be staged?

In the current λ-calculus tradition M is self-contained; there is no dynamic data.
So why would one wish to break normalisation into 2 stages?

Some motivations for staging The specialisation definition looks almost
trivial on a normaliser program NP:

∀M ∈ Λ . [[ [[spec]](NP,M)]]() = [[NP]](M)

An extension: allow M to have separate input data, e.g., the input value 2 as in
the example of Section 2. Assume that NP is extended to allow run-time input
data.7 The specialisation definition becomes:

∀M ∈ Λ, d ∈ Data . [[ [[spec]](NP,M)]](d) = [[NP]](M,d) =β M@d

Is staged normalisation a good idea? Let NPM = [[spec]](NP,M) be the spe-
cialiser output.

1. One motivation is that NPM can be in a much simpler language than the
λ-calculus. Our candidate: the “low-level language” LLL of Section 5.

2. A well-known fact: the traversal of M may be much larger than M . By
Statman’s results [19] it may be larger by a “non-elementary” amount (!).

Nonetheless it is possible to construct a λ-free residual program NPM with
|NPM | = O(|M |), i.e., such that M ’s LLL equivalent has size that is only
linearly larger than M itself. More on this in Section 6.3.

3. A next step: consider computational complexity of normalising M , if it is ap-
plied to an external input d. For example the Church numeral multiplication
algorithm runs in time of the order of the product of the sizes of its two
inputs.

4. Further, two stages are natural for semantics-directed compiler generation.

7 Semantics: simply apply M to Church numeral d before normalisation begins.
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How to do staging Ideally the partial evaluator can do, at specialisation time,
all of the NP operations that depend only on M . As a consequence, NPM will
have no operations at all to decompose or build lambda expressions while it runs
on data d. The “residual code” in NPM will contain only operations to extend
the current traversal, and operations to test token values and to follow the back
pointers.

Subexpressions of M may appear in the low-level code, but are only used
as indivisible tokens. They are only used for equality comparisons with other
tokens, and so could be replaced by numeric codes – tags to be set and tested.

6.3 How to specialise NP with respect to M ?

The first step is to annotate parts of (the program for) NP as either static
or dynamic. Computations in NP will be either unfolded (i.e., done at partial
evaluation time) or residualised: Runtime code is generated to do computation
in the output program NPmul (this is ps as seen in the definition of a specialiser).

Static: Variables ranging over syntactic objects are annotated as static. Ex-
amples include the λ-expressions that are subexpressions of M . Since there are
only finitely many of these for any fixed input M , it is safe to classify such
syntactic data as static.

Dynamic: Back pointers are dynamic; so the traversal being built must
be dynamic too. One must classify data relevant to traversals or histories as
dynamic, since there are unboundedly many.8

For specialisation, all function calls of the traversal algorithm to itself that do
not progress from one M subexpression to a proper subexpression are annotated
as “dynamic”. The motivation is increased efficiency: no such recursive calls
in the traversal-builder will be unfolded while producing the generator; but all
other calls will be unfolded.

About the size of the compiled λ-expression (as discussed in Section 6.2).

We assume that NP is semi-compositional: static arguments ei in a function
call f(e1, . . . , en) must either be absolutely bounded, or be substructures of M
(and thus λ-expressions).

The size of NPM will be linear in |M | if for any NP function f(x1, . . . , xn),
each static argument is either completely bounded or of BSV; and there is at
most one BSV argument, and it is always a subexpression of M .

8 In some cases more can be made static: “the trick” can be used to make static copies
of dynamic values that are of BSV, i.e., of bounded static variation, see discussion
in [12].
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6.4 Transforming a normaliser into a compiler

Partial evaluation can transform the ULC (or STNP) normalisation algorithm
NP into a program to compute a semantics-preserving function

f : ULC→ LLL (or f : STLC→ LLL)

This follows from the second Futamura projection. In diagram notation of [12]:

If NP ∈
L

ULC

then [[spec]](spec,NP) ∈
ULC LLL

L

-

.

Here L is the language in which the partial evaluator and normaliser are written,
and LLL of Section 5 is a sublanguage large enough to contain all of the dynamic
operations performed by NP.

Extending this line of thought, one can anticipate its use for a semantics-directed
compiler generator, an aim expressed in [10]. The idea would be to use LLL as
a general-purpose intermediate language to express semantics.

6.5 Loops from out of nowhere

Consider again the Church numeral multiplication (as in Figure 1), but with a
difference: suppose the data input values for m,n are given separately, at the
time when program NPmul is run.. Expectations:

– Neither mul nor the data contain any loops or recursion. However mul will
be compiled into an LLL -program NPmul with two nested loops.

– Applied to two Church numerals m,n, NP mul computes their product by
doing one pass over the Church numeral for m, interleaved with m passes
over the Church numeral for n. (One might expect this intuitively).

– These appear as an artifact of the specialisation process. The reason the
loops appear: While constructing NPmul (i.e., during specialisation of NP to
its static input mul), the specialiser will encounter the same static values
(subexpressions of M) more than once.

7 Current status of the research

Work on the simply-typed λ-calculus

We implemented a version of STNP in haskell and another in scheme. We plan
to use the unmix partial evaluator (Sergei Romanenko) to do automatic partial
evaluation and compiler generation. The haskell version is more complete,
including: typing; conversion to eta-long form; the traversal algorithm itself; and
construction of the normalised term.
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We have handwritten STNP-gen in scheme. This is the generating extension
of STNP. Effect: compile from UNC into LLL, so NPM = [[STNP-gen]](M).
Program STNP-gen is essentially the compiler generated from STNP that could
be obtained as in Section 6.4 Currently STNP-gen yields output NPM as a
scheme program, one that would be easy to convert into LLL as in Section 5.

Work on the untyped λ-calculus

UNP is a normaliser for UNC. A single traversal item may have two back point-
ers (in comparison: STNP uses one). UNP is defined semi-compositionally by
recursion on syntax of ULC-expression M . UNP has been written in haskell
and works on a variety of examples. A more abstract definition of UNP is on the
way, extending Section 4.4.

By specialising UNP, an arbitrary untyped ULC-expression can be translated
to LLL . A correctness proof of UNP is pending. No scheme version or generating
extension has yet been done, though this looks worthwhile for experiments using
unmix.

Next steps

More needs to be done towards separating programs from data in ULC (Section
6.5 was just a sketch). A current line is to express such program-data games
in a communicating version of LLL . Traditional methods for compiling remote
function calls are probably relevant.

It seems worthwhile to investigate computational complexity (e.g., of the λ-
calculus); and as well, the data-flow analysis of output programs (e.g., for pro-
gram optimisation in time and space).

Another direction is to study the utility of LLL as an intermediate language
for a semantics-directed compiler generator.
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Summary

Maximally-polyvariant partial evaluation is a strategy for program specialization
that propagates static values as accurate as possible [4]. The increased accuracy
allows a maximally-polyvariant partial evaluator to achieve, among others, the
Bulyonkov effect [3], that is, constant folding while specializing an interpreter.

The polyvariant handling of return values avoids the monovariant return
approximation of conventional partial evaluators [14], in which the result of a
call is dynamic if one of its arguments is dynamic. But multiple return values
are the “complexity generators” of maximally polyvariant partial evaluation be-
cause multiple continuations need to be explored after a call, and this degree of
branching is not bound by a program-dependent constant, but depends on the
initial static values. In an offline partial evaluator, a recursive call has at most
one return value that is either static or dynamic.

A conventional realization of a maximally-polyvariant partial evaluator can
take exponential time for specializing programs. The online partial evaluator [10]
achieves the same precision in time polynomial in the number of partial-evaluation
configurations. This is a significant improvement because no fast algorithm was
known for maximally-polyvariant specialization. The solution involves applying
a polynomial-time simulation of nondeterministic pushdown automata [11].

For an important class of quasi-deterministic specialization problems the par-
tial evaluator takes linear time, which includes Futamura’s challenge [8]: (1) the
linear-time specialization of a naive string matcher into (2) a linear-time matcher.
This is remarkable because both parts of Futamura’s challenge are solved. The
second part was solved in different ways by several partial evaluators, includ-
ing generalized partial computation by employing a theorem prover [7], perfect
supercompilation based on unification-based driving [13], and offline partial eval-
uation after binding-time improvement of a naive matcher [5]. The first part re-
mained unsolved until this study, though it had been pointed out [1] that manual
binding-time improvement of a naive matcher could expose static functions to
the caching of a hypothetical memoizing partial evaluator.

Previously, it was unknown that the KMP test [15] could be passed by a
partial evaluator without sophisticated binding-time improvements. Known so-
lutions to the KMP test include Futamura’s generalized partial computation
utilizing a theorem prover [8], Turchin’s supercompilation with unification-based
driving [13], and various binding-time-improved matchers [1, 5].



Preliminary Report on Polynomial-Time Program Staging 25

As a result, a class of specialization problems can now be solved faster than
before with high precision, which may enable faster Ershov’s generating exten-
sions [6,9,12], e.g., for a class similar to Bulyonkov’s analyzer programs [2]. This
is significant because super-linear program staging by partial evaluation becomes
possible: the time to run the partial evaluator and its residual program is linear
in the input, while the original program is not, as for the naive matcher.

This approach provides fresh insights into fast partial evaluation and accurate
program staging. This contribution summarizes [10, 11], and examines applica-
tions to program staging, and the relation to recursive pushdown systems.
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Dedicated to the memory of V.F. Turchin (1931 - 2010) a thinker ahead of his time

Abstract. We introduce an alternative foundation of mathematics developed by
Valentin Turchin in the 1980s — Cybernetic Foundation of Mathematics. This
new philosophy of mathematics as human activity with formal linguistic ma-
chines is an extension of mathematical constructivism based on the notion of
algorithms that define mathematical objects and notions as processes of a certain
kind referred to as metamechanical. It is implied that all mathematical objects
can be represented as metamechanical processes. We call this Turchin’s thesis.

Keywords: constructive mathematics, alternative foundation of mathematics, Cy-
bernetic Foundation of Mathematics, model of a mathematician, mechanical and
metamechanical processes, objective interpretability, Turchin’s thesis.

1 Introduction: Challenge of Foundation of Mathematics

Valentin Turchin’s studies on the foundation of mathematics [1–4] comprise a highly
underestimated part of his scientific legacy. Like some other great mathematicians of
the 20th century, he was dissatisfied with the solution to the “crisis of mathematics”
associated with the likes of David Hilbert and Nicolas Bourbaki - the formal axiomatic
method. Its main drawback is that axioms, theorems and other formal texts of theories
do not contain real mathematical objects. They refer to mathematical objects by means
of variables and jargon, which are interpreted by human thought processes, but have no
concrete representation in the stuff of language. Very few mathematical objects have
names - constants like true, false, digits of numbers, etc. This corresponds to the Pla-
tonic philosophy of mathematics, an eternal immutable world of mathematical objects
and perceived by minds and shaped in mathematical texts.

Valentin Turchin’s take on mathematics is akin to constructivism: There is no Pla-
tonic world of mathematical objects. It is pure imagination. Mathematics is formal lin-
guistic modeling of anything in the world including mathematics. Mathematical objects
are abstract constructs represented by a formal language. The world of linguistic models
is not static. Sentences in a formal language define processes that are potentially infinite
? Supported by RFBR, research project No. 16-01-00813-a and RF President grant for leading

scientific schools No. NSh-4307.2012.9.



Introduction to Valentin Turchin’s Cybernetic Foundation of Mathematics 27

sequences of states, where the states are also sentences in the language. These processes
themselves are (representations of) mathematical objects. Mathematical objects are not
a given, but are created by mathematicians in the process of their use of mathematical
“machinery”. This process of mathematical activity itself can be linguistically modeled,
that is included into mathematics as well.

Turchin’s thesis: Everything that humans may consider to be a mathematical object
can be represented as a formal linguistic process. Valentin Turchin did not express this
thesis explicitly. It is our interpretation of what we feel he implied.

The main problem is how to define a notion of linguistic processes to suit Turchin’s
thesis, that represents all objects mathematicians agree are mathematical. Valentin Turchin
was not the first to imagine this kind of solution to the problem of foundation of math-
ematics. Attempts had been made by mathematicians in the early 20th century which
failed. The idea was to equate the processes mentioned in the thesis with algorithms.
Sophisticated mathematical theories were built on the basis of this idea in the 1950s
and 1960s including constructive mathematical analysis that dealt with real numbers
produced digit by digit by means of algorithms and functions that return their values
digit by digit while gradually consuming digits of the arguments.

Unfortunately, such constructive theories were too limited to satisfy Turchin’s the-
sis. For example, all constructive functions of real numbers are continuous; hence, dis-
continuous functions are excluded from that view of constructive mathematics. Working
mathematicians reject this restriction. They consider a great amount of mathematical
objects that cannot be represented by algorithms.

Thus mathematical constructivists met a great challenge: How to define a wider no-
tion of a linguistic process than algorithms, sufficient to represent mathematical objects.

Valentin Turchin’s Cybernetic Foundation of Mathematics (CFM) is a solution to
this problem.

2 Basics of Cybernetic Foundation of Mathematics

CFM starts from the concept of constructive mathematics based on algorithms. Pro-
cesses defined by algorithms are included in CFM. The whole of algorithmic and pro-
gramming intuition works well in CFM. Valentin Turchin uses his favorite program-
ming language Refal to define processes, but any other programming language will do,
preferably a functional one in order to keep things as simple as necessary. For example,
the main objects of modern mathematics - sets - are defined by processes that produce
elements one by one. Thus, infinity is only potential: each element of an infinite set is
produced at some finite moment of time, at no moment are all elements present together.

The next question is what kind of propositions about processes can be formulated
and proved. Here Valentin Turchin departs from the solution adopted by the previous
constructivists. He demonstrates that only two kinds of elementary propositions are
needed:

1. that a given process (with given arguments) terminates at some step, and
2. that a given process never terminates.
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All other statements about processes and mathematical objects can be expressed as
propositions in this form, regarding processes defined by a mathematician in a chosen
formal (programming) language.

This may sound strange (if not impossible) to mathematicians who studied the the-
ory of computability and know about algorithmically undecidable problems.

Here Valentin Turchin introduces in mathematical machinery the concepts that we
observe in the scientific activity in natural sciences. Traditionally, mathematics is not
included in sciences. We often hear: “Mathematics and sciences”. So one could that say
Turchin has returned mathematics to the natural sciences.

Scientists operate well with statements they do not know in advance to be true: they
propose testable hypotheses, predictions, whose characteristic feature is that they can
be either confirmed or falsified at some moment in time; they hold the prediction true
until falsified; if it is falsified they reconsider and state the negation of the prediction
then propose the next hypotheses. Scientists believe there exists a trajectory without
backtracking, a process of gradually increasing knowledge. This belief with respect to
linguistic processes is the background of CFM.

The elementary propositions are predictions: The proposition that a given process
terminates, cannot be confirmed while the process is running; but when it stops, the
proposition is confirmed and becomes certainly true. The proposition that a process does
not terminate can never be confirmed, but if it does it is falsified and mathematicians
return back and add its negation (saying that the process terminates) to their knowledge.

When we explain the meaning of the propositions, predictions, and truths by refer-
ring to the notion of mathematicians, their knowledge, their proposing of predictions,
and their process of gaining knowledge by confirmations and falsifications of the pre-
dictions, we speak about a model of a mathematician. This model is introduced into
the mathematical machinery and becomes one of the first-class processes considered
in CFM. The previous philosophy of mathematics assumes mathematics is objective in
the sense that while doing research, mathematicians are outside of mathematics, they
are merely observers of eternal mathematical phenomena, observers who do not influ-
ence the mathematical machinery but focus their attention on interesting phenomena to
discover truths and proofs about them.

Valentin Turchin said that he had introduced mathematicians to mathematics in the
same way as modern physics introduced physicists, as observers, to physical theories.

This sounds fantastic. Nevertheless Valentin Turchin has achieved this ambitious
goal. In his texts [1–4] are many definitions of mathematical objects including the model
of the classic set theory, in terms which modern mathematicians like to define their
objects. Hence, he has proved that Turchin’s thesis is met at least for objects expressible
in set theory.

3 Mechanical and Metamechanical Process

In CFM, proper algorithms are referred to as mechanical processes. Processes of gen-
eral form defined in the programming language of CFM theory can additionally access
primitive cognitive functions that answer questions like “Does this process terminates
or not?”:
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– if process p terminates then . . . else . . .
– if process p never terminates then . . . else . . .

If the answer is not yet confirmed or falsified for the respective branch of the con-
ditional and we have no reason to consider it contradictory (this notion is also defined
in CFM), a truth value can be assigned to it as a prediction.

Processes that use predictions as predicates are referred to as metamechanical pro-
cesses. The collection of predictions that are available at a given moment of time is
kept as the current knowledge of (the model of) the mathematician. It is considered as
an infinite process producing all true predictions like other infinite processes.

Valentin Turchin demonstrated how all essential mathematical notions are defined
as metamechanical processes and we, the authors of mathematical theories, should rea-
son about them. Specific mathematical theories can introduce additional cognitive func-
tions in the same style. For example, Valentin Turchin interpreted set theory with the
use of the second cognitive primitive: the process that enumerates all sentences that
define sets, that is, represents the universe of sets. (Those who remember the famous
set-theoretical paradoxes should immediately conclude that this process cannot be a
definition of some set and cannot be produced as an element of this collection.)

Reasoning about metamechanical processes is nontrivial if possible at all. Let us
consider the most subtle point to lift the veil off CFM a little.

4 Objective Interpretability

Having introduced (the model of) mathematicians into the mathematical machinery by
allowing access to their knowledge, we met (the model of) of free will: if the behav-
ior of mathematicians and content of their knowledge are deterministic, than there is
nothing essentially new in the notion of a metamechanical process. Many kinds of such
generalizations of algorithms have already been considered in mathematics and found
to be incomplete. Hence, we must expect that a complete (w.r.t. Turchin’s thesis) notion
of metamechanical processes inevitably allows us to define non-deterministic processes
as well. This means that in the hands of one (model of the) mathematician one result
may be produced (e.g., some process terminated), while in the hands of another (model
of the) mathematician a different result is returned (e.g., the process with the same def-
inition did not terminate).

This is the next strange thing of CFM, considered unacceptable by classic math-
ematicians. Valentin Turchin did not explain how to deal with non-deterministic pro-
cesses in general. However, as far as the interpretation of classic mathematics, which
all mathematicians believe to be deterministic, is concerned, it is natural to expect that
the metamechanical processes used to define classic mathematical notions are deter-
ministic.

In CFM, processes that produce the same results in hands of different instantiations
of the model of the mathematician (that is with different initial true knowledge) are
referred to as objectively interpretable metamechanical processes.

Thus, we, real mathematicians (not models), should use the CFM machinery in the
following way:
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1. Define some notions of a mathematical theory under study as processes in the pro-
gramming language of CFM.

2. Prove somehow (in meta-theory, formally or informally, etc.) that the defined pro-
cesses are objectively interpretable.

3. Then freely use these definitions in our mathematical activity and, in particular, in
the definitions of next notions and learning truths about these processes.

One may ask: What is the reliability of (meta-) proofs in Item 2? — The answer is:
It depends. It must be sufficient for your activities in Item 3. It is the choice of your free
will.

Notice that not all definitions are subject to non-trivial proofs in Item 2. There is
no problem with new definitions that do not call directly cognitive functions of the
model of the mathematician and use only functions that are already proven objectively
interpretable. Such definitions are automatically objectively interpretable as well.

5 Interpretation of Set Theory

Valentin Turchin has demonstrated how to define metamechanical processes and prove
they are objectively interpretable for the classic mathematical logic and set theory. He
considered in turn all axioms of the classic logic and Zermelo–Fraenkel set theory, gave
definitions of the corresponding processes and proved their objective interpretability.

The proof techniques ranged from quite trivial, based on programmers’ intuition,
to rather sophisticated. Almost all Zermel–Fraenkel axioms are existential: they state
existence of certain mathematical objects in set theory. Each existential statement is
interpreted in the constructive style: by the definition of the process that meets the
property formulated in the axiom. For example, the axiom of existence of the empty
set is a process that returns the empty list in one step; the axiom of existence of the pair
of two arbitrary sets is a process that produces the list of the two elements.

It is intriguing that Valentin Turchin did not manage to find a definition of a process
and a proof of its objective interpretability for the axiom schema of replacement, which
was the last added by Fraenkel to form the Zermelo–Fraenkel axioms. Its interpretation
in CFM remains an open problem.

6 Open Problems

Valentin Turchin laid the foundations for new constructive mathematics. However, these
are only the first steps and much remains to do to turn the new foundation of mathemat-
ics into a new paradigm. We list some evident open problems to provoke the reader:

– Complete Valentin Turchin’s interpretation of the Zermelo–Fraenkel set theory. He
defined the corresponding process for a particular case only, where an objectively
interpretable function is given in the antecedent of the axiom rather than an objec-
tively interpretable relation.
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– Are there any interesting applications of non-deterministic, non-objectively inter-
pretable processes? If yes, how can we apply them in our mathematical activity.
CFM does not prohibit this, but Valentin Turchin did not suggest a way to deal with
such definitions. He only demonstrated how to exclude them from our discourse.

– Formalize the way of Turchin’s reasoning where he proved objective interpretabil-
ity, in any modern mathematical theory of your choice. Find interesting applications
where such formalization is difficult.

– Where does the CFM style of reasoning and thinking do better than the classical
one? Find interesting applications where CFM may clarify or explain something
better than can classic mathematics and the previous constructivism.

– Examine the correspondence of CFM with existing constructive theories. For ex-
ample, how to compare CFM, without types and with a language of CFM statically
untyped, with the dependent types theory and programming of proofs in a typed
functional programming language.

– Develop a proof assistant for CFM, which will help us work with constructive defi-
nitions of metamechanical processes and check proofs of objective interpretability.

– It is fair to predict that supercompilation will become an important tool for the
manipulation of mathematical definitions in CFM, and extraction and proofs of
their properties. Will supercompilers be somehow extended to become effectively
applicable to CFM code? Develop and implement a supercompiler to be used as a
CFM proof assistant.
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Abstract. It is a widely held belief that supercompilation like partial evalua-
tion is only capable of linear-time program speedups. The purpose of this paper
is to dispel this myth. We show that supercompilation is capable of superlinear
speedups and demonstrate this with several examples. We analyze the transfor-
mation and identify the most-specific generalization (msg) as the source of the
speedup. Based on our analysis, we propose a conservative extension to super-
compilation using equality indices that extends the range of msg-based superlin-
ear speedups. Among other benefits, the increased accuracy improves the time
complexity of the palindrome-suffix problem from O(2n

2

) to O(n2).

Keywords: program transformation, supercompilation, unification-based infor-
mation propagation, most-specific generalization, asymptotic complexity.

1 Introduction

Jones et al. reported that partial evaluation can only achieve linear speedups [11, 12].
The question of whether supercompilation has the same limit remains contentious. It has
been said that supercompilation is incapable of superlinear (s.l.) speedups (e.g., [13]).

However, in this paper we report that supercompilation is capable of s.l. speedups
and demonstrate this with several examples. We analyze the transformation and identify
the most-specific generalization (msg) as the source of this optimization. Based on our
analysis, we propose a straightforward extension to supercompilation using equality in-
dices that extends the range of s.l. speedups. Among other benefits, the time complexity
of the palindrome-suffix problem is improved from O(2n

2

) to O(n2) by our extension.
Without our extension the msg-based speedup applies to few “interesting programs”.

First, let us distinguish between two definitions of supercompilation:

supercompilation = driving + folding + generalization (1)

and
supercompilation = driving + identical folding (2)

? Supported by RFBR, research project No. 16-01-00813-a and RF President grant for leading
scientific schools No. NSh-4307.2012.9.
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Examples of these have been described, SCP (1) [7, 17, 27, 28, 30] and SCP (2) [4,
25]. In brief, the former use various sophisticated whistle and generalization algorithms
to terminate the transformation. In contrast, the latter only fold two configurations that
are identical modulo variable renaming (α-identical folding) [25]. This means, SCP (2)
terminate less often than do SCP (1). Nevertheless, non-trivial optimization can be
achieved by SCP (2) due to the unification-based information propagation by driving,
such as the optimization of a string matcher [4].

It was reported as proven that supercompilation, like partial evaluation, is not ca-
pable of s.l. speedups. However, that proof [23, Ch. 11] applies only to SCP (2) using
identical folding without online generalization during supercompilation [23, Ch. 3], it
does not apply to SCP (1).4 We will show that s.l. speedups require folding and most-
specific generalization.

We begin by giving an example that demonstrates that supercompilation is capable
of s.l. speedups in Section 2. In Section 3, we briefly review driving and generalization
of core supercompilation, the latter of which is the key to our main technical result. We
characterize the limits of s.l. speedup by supercompilation in Section 4. In Section 5
we present our technique using equality indices which extend the range of superlinear
speedups that a core supercompiler can achieve. Section 6 is the conclusion.

We assume that the reader is familiar with the basic notion of supercompilation (e.g.,
[4, 7, 25]) and partial evaluation (e.g., [12]). This paper follows the terminology [7]
where more details and definitions can be found.

2 A Small Example of Superlinear Speedup by Generalization

To dispel the “myth” that supercompilation is only capable of linear speedups, let us
compare supercompiler types, SCP(1) and SCP(2), using an example and analyze the
transformations with and without generalization. This is perhaps the smallest example
that demonstrates that an exponential speedup by supercompilation is possible.

The actual program transformations in this paper were performed by Simple Su-
percompiler (SPSC) [17]5, a clean implementation of a supercompiler with positive
driving and generalization. The example programs are written in the object language of
that system, a first-order functional language with normal-order reduction to weak head
normal form [7]. All functions and constructors have a fixed arity. Pattern matching is
only possible on the first argument of a function. For example, the function definition
f(S(x), y) = f(x, y) is admissible, but f(x, S(y)) = f(x, y) and f(S(x), S(y)) =
f(x, y) are not.

Example 1. Consider a function f that returns its second argument unchanged if the
first argument is the nullary constructor Z and calls itself recursively if it has the unary
constructor S as the outermost constructor. The function always returns Z as a result.
The computation of term f(x, x) in the start function p(x) takes exponential timeO(2n)
due to the nested double recursion in the definition of f (here, n = |x| is the number

4 Similar to partial evaluation, the result of a function call can be generalized by inserting let-
expressions in the source program by hand (offline generalization) [2].

5 SPSC home page http://spsc.appspot.com.
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f(x, x)

x=Z

{{

x=S(v0)

((

Z f(f(v0, v0), f(v0, v0))

��
let v1=f(v0, v0) in f(v1, v1)

vv ))
f(v0, v0) f(v1, v1)

a) Driving with most-specific generalization: exponential speedup.

f(x, x)

x=Z

zz

x=S(v0)

**

Z f(f(v0, v0), f(v0, v0))

��
let v1=f(v0, v0) v2=f(v0, v0) in f(v1, v2)

tt �� **
f(v0, v0) f(v0, v0) f(v1, v2)

��
b) Driving without most-specific generalization: linear speedup.

Fig. 1. The partial process trees of a supercompiler with and without generalization.

of S-constructors in the unary number x). The residual program f1 produced by SPSC
takes time O(n) on the same input, that is an exponential speedup is achieved.6

Source program Residual program
Start p(x) = f(x, x); Start p1(x) = f1(x);
f(Z, y) = y; f1(Z) = Z;
f(S(x), y) = f(f(x, x), f(x, x)); f1(S(x)) = f1(f1(x));

To understand what causes this optimization, compare the two process trees pro-
duced by a supercompiler with and without generalization (Fig. 1a,b). In both cases,
driving the initial term s = f(x, x) branches into two subtrees. One for x=Z and one
for x=S(v0). Driving the left subtree terminates with term Z. In the right subtree each

6 The speedup is independent of whether the programs are run in CBV, CBN or lazy semantics.
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occurrence of x in the right-hand side of f is replaced by S(v0) and driving leads to
the new term t = f(f(v0, v0), f(v0, v0)). The msg of the initial term s and the term t
captures the repeated term f(v0, v0):

bs, tc = (f(v1, v1), {v1 := x}, {v1 := f(v0, v0)}) , (3)

and leads to the creation of the generalized node in the process tree (a):

let v1=f(v0, v0) in f(v1, v1) . (4)

Both of the subterms in this node are instances of the initial term s and can be folded
back to it. Hence, the process tree is closed and driving terminates. The linear-time
residual program f1 in Example 1 is obtained from process tree (a). Each function
takes as many arguments as there are configuration variables in the corresponding con-
figuration. Now only one variable remains, and the residual function becomes unary.
It is the second rule of the msg (defined in Sect. 3) that unifies equal subterms and
introduces term sharing in the process tree. We call this mechanism msg-sharing.

This optimization cannot be achieved by an SCP (2) supercompiler using identi-
cal folding without msg. In the same situation, as shown in process tree (b), such a
supercompiler loses the connection between the two arguments in the body of the let-
expression: f(v1, v2). As a result, the original function definition is rebuilt in the resid-
ual program. In fact, without inserting let-expressions in one way or another, a super-
compiler with identical folding does not terminate because the configurations continue
to grow due to unfolding function calls. Like partial evaluation, s.l. speedup cannot be
achieved by SCP (2). That supercompilation with msg can change the asymptotic time
complexity was demonstrated above.

The speedup results from core positive supercompilation with msg [7], with no
additional transformation techniques. The speedups are achieved both in call-by-name
and call-by-value performance.

To illustrate the optimization, we compare side-by-side the runs of the source func-
tion and the residual function with unary input SSSZ (abbreviated by 3). Fig. 2 shows
the relevant normal-order reduction steps and omits some of the intermediate steps. The
reader will notice that one call f(3, 3) in the source-program run (left side) corresponds
to one call f1(3) in the residual-program run (right side), two calls f(2, 2) to one call
f1(2), and four calls of f(1, 1) to one call f1(1). In general, 2m calls f(n−m,n−m)
correspond to one call f1(n−m) where n is the number represented by the unary input
and 0 ≤ m < n. This shows that s.l. speedup relates to a variable-sized input, where
the improvement increases superlinearly as the size of the input grows.

3 The Core Supercompiler

In this section we briefly review supercompilation with generalization. Since supercom-
pilation is formally defined in the literature (e.g., [7]) we will skip the full definition here
and only review the algorithm of msg which introduces the sharing of terms.

A supercompiler takes an initial term and a program, and constructs a possibly in-
finite process tree. If the process tree is finite, a new term and a residual program are
generated. The two main components of a supercompiler for developing the process
tree are driving and generalization.
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f(SSSZ, SSSZ) f1(SSSZ)

f(SSSZ,SSSZ) → f(f(SSZ,SSZ), f(SSZ,SSZ))

��
f(f(SSZ, SSZ), f(SSZ, SSZ)) f1(SSSZ)→f1(f1(SSZ))

��

f(SSZ,SSZ) → f(f(SZ,SZ), f(SZ,SZ))

��
f(f(f(SZ, SZ), f(SZ, SZ)), f(SSZ, SSZ)) f1(f1(SSZ))

f(SZ,SZ) → f(f(Z,Z), f(Z,Z))

��
...
��

f(f(SZ, SZ), f(SSZ, SSZ)) f1(SSZ)→f1(f1(SZ))

��

f(SZ,SZ) → f(f(Z,Z), f(Z,Z))

��
...
��

f(SSZ, SSZ) f1(f1(f1(SZ)))

f(SSZ,SSZ) → f(f(SZ,SZ), f(SZ,SZ))

��
f(f(SZ, SZ), f(SZ, SZ)) f1(SZ)→f1(f1(Z))

��

f(SZ,SZ) → f(f(Z,Z), f(Z,Z))

��
...
��

f(SZ, SZ) f1(f1(f1(f1(Z))))

��

f(SZ,SZ) → f(f(Z,Z), f(Z,Z))

��
... ...

Fig. 2. Exponential- and linear-time runs of the source and residual functions of Example 1.

Driving makes use of unification-based information propagation to construct the pro-
cess tree during supercompilation. Common to all driving methods regardless of their
degree of information propagation [4] is the use of configuration variables and non-
linear configurations. These features distinguish driving from the constant-based infor-
mation propagation of partial evaluation. It is essential that configuration variables may
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occur repeatedly in a configuration. This is key to expressing term equality and sharing
results of a subcomputation as demonstrated in Example 1.

Generalization To ensure that a finite process tree is constructed from which a residual
program can be generated, supercompilation uses the most specific generalization. The
result of the msg is used to decide whether to continue driving, fold to an existing con-
figuration, or to generalize two configurations to a new one. There are various strategies
to choose which configurations the msg is applied to and how its result is used including
the use of transient configurations, upward and downward generalization. The particu-
lar strategy is irrelevant to this paper except that different strategies present more or less
sharing opportunities to the msg.

We review the definition of msg used in positive supercompilation (taken from [24]).
The msg of two terms, bs, tc, is computed by exhaustively applying the following
rewrite rules to the triple (x, {x := s}, {x := t}). The result is the msg (tg, θ1, θ2)
including a generalized term tg and two substitutions θ1 and θ2 such that tgθ1 = s and
tgθ2 = t. Any two terms s and t have an msg which is unique up to renaming.



tg
{x := σ(s1, . . . , sn)} ∪ θ1
{x := σ(t1, . . . , tn)} ∪ θ2


 →



tg{x := σ(y1, . . . , yn)}
{y1 := s1, . . . , yn := sn} ∪ θ1
{y1 := t1, . . . , yn := tn} ∪ θ2






tg
{x := s, y := s} ∪ θ1
{x := t, y := t} ∪ θ2


 →



tg{x := y}
{y := s} ∪ θ1
{y := t} ∪ θ2




Take for example the msg of the two configurations in Eq. 3 of Example 1. It iden-
tified the term-equality pattern in terms and led to the sharing by a let-expression.

An important property is that msg-based generalization is semantics preserving. The
branches merged in the process tree are identical. No computation is deleted, and only
the result of a computation is shared by a let-expression. The term equality expressed
by a let-expression, e.g. let v1=f(v0, v0) in f(v1, v1).

The sharing that supercompilation introduces may look like common subexpression
elimination, but it is a dynamic property that occurs only during driving as the following
example illustrates.

Example 2. Consider a variant of Example 1 where the right-hand side of function g
contains the permuted terms f(x, y) and f(y, x). As before, given the initial configura-
tion f(x, x), the supercompiler achieves an exponential speedup. The term equality is
discovered by the msg because the configuration variables are propagated during driv-
ing. Common subexpression elimination will not discover this equality.

Source program Residual program
Start p(x) = f(x, x); Start p1(x) = f1(x);
f(Z, y) = y; f1(Z) = Z;
f(S(x), y) = g(y, x); f1(S(x)) = f1(f1(x));
g(Z, y) = y;
g(S(x), y) = f(f(x, y), f(y, x));
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4 Limitations of Sharing by Supercompilation

We identified the msg as the mechanism that introduces sharing of equal terms. We
demonstrated that s.l. speedups are possible by supercompilation contradicting a com-
mon belief, but found few “interesting problems” to which this applies. For example,
why does supercompilation not improve the well-known naive, exponential-time Fi-
bonacci function? Some of the limitations that we identified are due to the strategy of
developing process trees, e.g. identical configurations are not shared across subtrees.
Other limitations are due to the unselective application of the msg to configurations,
which leads to a loss of term equalities in the process tree. In this section, we examine
two important limitations of core supercompilation. For the latter, we propose a more
accurate technique of equality indices in the following section.

Limitation 1: No sharing across subtrees The speedups described so far are due to the
sharing of computations. Core supercompilation does not identify all equal subterms in
a single term (unlike the general form of jungle driving [21]). The msg identifies equal
subterms when comparing two configurations, each of which contains equal subterms
in the same positions. Thus, after a configuration is decomposed into subterms, e.g. by
a let-expression, equal subterms are no longer identifiable as equal by the msg. The
msg works locally on two given configurations in the process tree. Therefore, well-
known examples with obvious opportunities for sharing cannot be improved by msg-
sharing. They require a different supercompilation strategy for building process trees.
This includes the naive Fibonacci function which requires the sharing of equal terms
across subtrees. Let us illustrate this limitation.

Example 3. Consider the naive Fibonacci function:

f(Z) = S(Z);
f(S(x)) = ff (x);
ff (Z) = S(Z);
ff (S(x)) = add(f(x), f(S(x))).

There are several repeated terms in the process tree of the naive Fibonacci function
(Fig. 3), but they occur in separate subtrees. For example, the terms ff (v2) as well as
ff (v3). The msg alone cannot find equal nodes across different subtrees. To share such
terms requires another strategy of building process trees in the supercompiler. Clearly,
msg-sharing cannot speed up the naive Fibonacci function, which is a limitation of the
supercompilation strategy of building process trees.

Limitation 2: Unselective generalization Two configurations with the same pattern
of equal subterms are more likely to appear when a generalization in a branch of the
process tree with certain contractions of the variables is considered than when a general-
ization with the initial configuration is done. But in that case, the general configuration
which is a parent of the more specific configuration may be generalized with this con-
figuration resulting in the loss of the subterm equalities. This limitation of the strategy
of applying msg-sharing can be avoided by a more accurate generalization as we will
show in the next section. Let us illustrate this problem.
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x=S(v0)��
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f(S(v2))
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ff (v2)

Fig. 3. A fragment of the process trees of the naive Fibonacci function.

Example 4. We replace the initial configuration of Example 1 by p(x, y) = f(x, y).
Given the process tree for p(x, y), the configurations f(x, y) and f(f(x, x), f(x, x))
are generalized to f(x, y). After such a generalization, no speedup can be achieved
by sharing. The residual program replicates the source program and no speedup is
achieved. However, the second argument of the initial configuration is significant only
for the first evaluation of f(x, y). In all following evaluation steps, the initial value of
y does not occur, and all calls of f have equal first and second arguments. The lesson
learned from this example is that term equalities should be preserved in configurations.
We shall use this observation as the basis for our extension.

Source program Residual program
Start p(x, y) = f(x, y); Start p(x, y) = f1(x, y);
f(Z, y) = y; f1(Z, y) = y;
f(S(x), y) = f(f(x, x), f(x, x)); f1(S(x), y) = f1(f1(x, x), f1(x, x));

5 Increasing the Accuracy of Sharing: Equality Indices

Based on our analysis above, namely the generalization of term equalities in Example 4,
we propose a new, conservative extension to supercompilation that makes the applica-
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tion of the msg more accurate. We propose equality indices to reduces the loss of term
equalities. Our goal is not to change the definition of the msg or the driving strategy, but
to exploit the msg such that more term equalities can be preserved. We want residual
programs to contain as many shared function calls as possible. A technique that assists
in this task must distinguish function calls that have different term-equality patterns.
Also, the technique must be applicable after each driving step during supercompilation
because term equalities in configurations are a dynamic property (cf. Example 2).

5.1 How it Works

We examined several examples that show there are more chances for a deep optimiza-
tion by preserving the term equalities uncovered dynamically during driving. It is more
likely that this can be exploited by supercompiling a call with term equalities, e.g.
f(t, t), than a call without such equalities, e.g. f(s, t) where s 6= t. We have seen
in Example 4 that the loss of these equalities during msg limits the overall optimization
by the supercompiler. Example 1 showed that in the residual program the arity of f(t, t)
is reduced to f1(t) provided a process graph can be built preserving this equality.

Our goal is to increase the accuracy of sharing by distinguishing calls that contain
different patterns of syntactic term equalities. Our approach has two components. The
annotation of all calls with equality indices, and the synchronization of annotated terms
after driving and before calculating the msg.

First, let us annotate all function names in a configuration with equality indices.
For example, the two calls from above are annotated as f[1](t, t) and f[2](s, t). Equality
indices are textual representations of equality patterns, which can be seen with function
calls represented by directed acyclic graphs (dag):

f

t

f

s t

The msg will treat function names with different equality indices as different functions,
thereby avoiding the loss of subterm equalities. The form and calculation of the indices,
also for the nested case, will be treated in more detail below. For now let it suffice to
say that they textually represent different sharing patterns (subterm equalities in calls).

The second issue that we need to approach is that driving can obscure term equali-
ties. For example, driving the following nested call in Example 4 forces the unfolding of
the first argument (underlined) and a substitution on the second argument (underlined).
This yields in one step a configuration where the term equality disappears (the pattern
matching on the first argument in a function definition forces the first argument to be
unfolded, but not the second argument).

f(f(x, x), f(x, x)) ≡ f(t, t)

↓ driving with x = S(v1)

f(f(f(v1, v1), f(v1, v1)), f(S(v1), S(v1))) ≡ f(t′, t′′), t′ 6= t′′
(5)
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Even though both arguments are identical before driving, this is obscured by unfolding
the first one and substituting S(v1) into the second one. In fact, both arguments should
be driven at the same time (in lockstep) to preserve the synchronization!

The new configuration should be as follows.

f(f(f(v1, v1), f(v1, v1)), f(f(v1, v1), f(v1, v1))) ≡ f(t′, t′) (6)

There are various ways to drive two (or more) terms in lockstep. Our solution is simpler
and does not require an extension of the driving strategy. We restore (“synchronize”) the
argument equality after the driving step using the equality indices. This simple syntactic
technique will be made more precise below, also for multiple arguments.

For our extension we need two small algorithms:

1. Annotate every call in a configuration with an equality index, e.g. f(t, t) ind→ f[1](t, t).
2. Synchronize all arguments in a driven configuration using the equality indices, e.g.

f[1](f[1](t, t), S(t))
sync→ f[1](f[1](t, t), f[1](t, t)) .

The two operations will be performed after driving and before applying the msg:

driven configuration→ (1) index→ (2) synchronize→ msg→ drive (7)

A node in the process tree will from then on contain a term annotated with equality
indices, tInd. This amplifies the power of the msg-based sharing mechanism that is
present in core supercompilation, and does not require a fundamental change of super-
compilation. It is not difficult to add this refinement to an existing system.

5.2 The Equality-Index Algorithm

We now present the technique in more detail. First, for each function call we find the
arguments which are equal, and identify them by marking each function name with an
equality index. Driving itself ignores the indexes, whereas the msg treats function names
with different indices differently. The equality indexes are used after each driving step
to restore argument equalities. The two algorithms, indexing and synchronization, are
applied after each driving step and before the whistle and msg algorithms are applied.

An equality index lists for each argument in a function call the smallest number
of the argument to which it is syntactically equal, in particular its own number if all
arguments to its left are different. For brevity, the equality index for the first argument
is omitted as it is always equal to 1.

For example, a call f(x, x, z) is marked with the equality index [1, 3], which means
that the second argument x is equal to the first argument x, and the third argument z is
not equal to an argument to its left. Not all index combinations are possible, e.g. no call
can be marked by [1, 2]. A call f(t1, . . . , tn) in which all arguments differ has the index
[2, . . . , n] and a call f(t, . . . , t) with identical arguments has the index [1, . . . , 1].

Given a node in the process tree of a program and the driven configuration t in the
node, we apply the following two algorithms to update the configuration.

First, we construct an annotated version of the configuration, which differs from the
plain configuration only by function call indexes.
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Fig. 4. Tree representations of terms vs. simple dag representations. A double arrow in the refer-
ence representation indicates the equality of arguments in a function call.

Algorithm 1 (Assigning equality indexes) 1. Given a configuration t, choose the in-
nermost, leftmost function call in t that is not annotated. Let that call be f(t1, . . . , tn).
(a) Assign auxiliary values i = 2, j = 1, Γ = [] (the empty list).
(b) If ti = tj (syntactically), append [j] to Γ , increase i, and set j = 1. Otherwise,

increase j and repeat step (b). When j reaches i, ti = tj is always true. So the
number of steps in (b) is finite.

(c) When i reaches n + 1, rename this call of f in t to fΓ . Then mark it as an
annotated call and proceed with step (1).

Γ is the equality index. The length of the list is equal to the arity of the indexed
function minus 1. This index shows which arguments of the call repeat each other. The
equality index makes function calls with different argument equalities differ from each
other, which preserves the equalities during the msg.

We illustrate how the Algorithm 1 works on term f(f(v0, v0), f(v0, v0)). The in-
nermost, leftmost function call is f(v0, v0), which is the first argument of the outer
call. Step (a) assigns i = 2, j = 1, Γ = []. Step (b) checks whether t1 = t2
(the two arguments of the call f ). Because v0 = v0, we get Γ = [1] and change
i to 3. Step (c) applies and the call is renamed to f[1](v0, v0). The term becomes
f(f[1](v0, v0), f(v0, v0)). The three steps are repeated with the second call f(v0, v0)
and the next term is f(f[1](v0, v0), f[1](v0, v0)). Finally, after repeating the steps with
the outermost call, the final term is f[1](f[1](v0, v0), f[1](v0, v0)). The indices in this
term identify for each argument the leftmost identical argument (Fig. 5, left tree).

All functions have a fixed arity, so for each function the set of possible equality
indices is finite. The annotation of a binary function can lead to at most two different
functions. A ternary function has at most five different equality indices and a function
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f[1]

f[1] f[1]+3

v0 v0+3 v0 v0+3

f[1]

f[1] f[1]+3+3

f[1] f[1]+3 S(v1) S(v1)+3

v1 v1+3 v1 v1+3

Tree term tInd before driving:
f[1](f[1](v0, v0), f[1](v0, v0))

Tree term t′Ind to be synchronized after driving:
f[1](f[1](f[1](v1, v1), f[1](v1, v1)), f[1](S(v1), S(v1)))

Fig. 5. Equality indexes identify the leftmost identical argument in a function call before driving,
and are used to restore the lost argument equalities after driving (bold double arrow, right tree).

with four arguments has at most 15 different equality indices (and it is rare that all 15
arrangements appear during the supercompilation of the same program). Usually, the
same function has only a few different equality indices.

The second algorithm restores obscured argument equalities using equality indexes.

Algorithm 2 (Synchronization) 1. Given an indexed term tInd, choose the inner-
most, leftmost unsynchronized function call. Let that call be f[k2,...,kn](t1, . . . , tn)
and set j = 2.

2. If kj = 1, replace the kj-th argument by the first argument. Otherwise, do nothing.
Then, in both cases, increase j by 1.

3. When j = n+1, proceed with step (1) because the synchronization of function call
f[k2,...,kn](t1, . . . , tn) is finished. Otherwise, proceed with step (2).

For example, given the term f[1](f[1](v0, v0), S(v1)), the innermost unsynchronized
call is f[1](v0, v0). Since the equality index contains 1 at the first position, we perform
the replacement and obtain the unchanged call f[1](v0, v0). Next, the innermost unsyn-
chronized call is the outermost call f[1](. . .). Again, we replace the second argument by
the first one. The synchronized term becomes f[1](f[1](v0, v0), f[1](v0, v0)).

Given calls f(t1, . . . , tn) and f(s1, . . . , sn). If ∀i, j . ti = tj ⇔ si = sj then the
equality indices for f(t1, . . . , tn) and f(s1, . . . , sn) are identical. Hence, if the msg
treats function names with different equality indices as different functions, it will never
generalize two equal arguments of a call to two unequal terms.

Correctness Why does the synchronization not change semantics of the computation?
The answer is that an argument can be copied in the call iff on some step of the com-
putation it is syntactically identical to the other argument. If the call whose argument
is copied retains its equality index, and the arguments of the call lose their syntactic
equality, it means that the call itself was not driven itself — only its first argument.
The source language guarantees that the driven argument is always the first argument
— and the first argument is never changed by the synchronization. So, when the term
is synchronized, its arguments are replaced only by semantically equal arguments that
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Z

Fig. 6. Unfolding the process tree with equality indices of Example 4.
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y f[1](f[1](v0, v0), f[1](v0, v0))
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ss ��
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uu
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f[1](f[1](z, z), f[1](z, z))

Z f[1](f[1](v2, v2), f[1](v2, v2))

Fig. 7. The closed process tree with equality indices of Example 4.

came through more driving steps. Thus, the termination property of the program is pre-
served.7

Example 5. After introduction of the equality indexes, the process tree of Example 4 is
constructed as follows. The first call f(x, y) is annotated by equality index [2] because
its two arguments are syntactically different.

Under the assumption that x = S(v0), driving yields the next configuration

f(f(v0, v0), f(v0, v0)) . (8)

First, the two innermost calls f(v0, v0) are annotated by equality index [1] (which
means that the second argument is equal to the first). Then the outermost function call

7 The source language plays a key role in this reasoning. If the language admits patterns with
static constructors also in other argument positions, Algorithm 2 must be changed. We must
not only copy the first argument, but any argument in which the actual driving step was done.
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is also annotated by equality index [1] (its two arguments are equal). We obtain the
indexed configuration (Fig. 5, left tree)

f[1](f[1](v0, v0), f[1](v0, v0)) . (9)

Although driving this configuration unfolds the call of f in the first argument of the
outermost call and substitutes into the second argument due to assumption v0 = S(v1),

f[1](f(f(v1, v1), f(v1, v1)), f[1](S(v1), S(v1))) , (10)

by which the two arguments become different, the configuration is synchronized to

f[1](f[1](f[1](v1, v1), f(v1, v1)), f[1](f[1](v1, v1), f(v1, v1))) (11)

because the equality index [1] of the outermost call of f is unchanged by the driving step
(Fig. 5, right tree) and the synchronization algorithm restores the lost syntactic equality
of the two arguments (Fig. 5, bold double arrow, right tree). The assumption v0 =
S(v1), which was used for the substitution into the second argument, remains in the
process tree (Fig. 6). Thus, no important driving information is lost by synchronization.

After the last step of driving, the msg of the two configurations (9) and (11),

bf[1](f[1](v0, v0), f[1](v0, v0)),
f[1](f[1](f[1](v1, v1), f[1](v1, v1)), f[1](f[1](v1, v1), f[1](v1, v1)))c
= (f[1](f[1](z, z), f[1](z, z)), θ1, θ2) ,

(12)

leads to the creation of the following generalization node in the process tree (Fig. 7):

let z=f[1](v1, v1) in f[1](f[1](z, z), f[1](z, z)) . (13)

Finally, after driving f[1](v1, v1) in (13), we obtain the closed process tree in Fig. 7.
A linear-time residual program is generated from this tree (shown below). An exponen-
tial speedup is achieved by supercompilation with equality indices, which was not pos-
sible in Example 4 without the generalization precision induced by the equality indices.

Source program Residual program
Start p(x, y) = f(x, y); Start p(x, y) = f2(x, y);
f(Z, y) = y; f2(Z, y) = y;
f(S(x), y) = f(f(x, x), f(x, x)); f2(S(x), y) = ff (x);

ff (Z) = Z;
ff (S(x)) = ff (f1(x));
f1(Z) = Z;
f1(S(x)) = ff (x);

In the residual program, the initial function f2 has the general form, and functions
ff and f1 are generated as a specialization of f having two equal arguments.

We conclude that the equality indices algorithm makes more calls with identical
arguments appear in the process tree. This method increases the precision of general-
ization without changing the driving and msg algorithms of the core supercompiler, but
it is not powerful enough to handle old problems such as optimization of the naive Fi-
bonacci function (Sect. 4). Equality indices do not give references to equal terms other
than those local in the arguments of a function call, but they are an effective mechanism
to preserve important argument equalities in a core supercompiler.
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5.3 More Examples of the Equality-Index Algorithm

By using the equality indexes algorithm, we can achieve a superlinear speedup as per
the following example.

Example 6. The palindrome-suffix program returns a suffix of either x or y that is a
palindrome. If x = A(A(A(B(Z)))) and y = A(B(A(B(Z)))) then the program
returns B(A(B(Z))). The program has run time O(2n

2

) where n = |x| + |y|, that is
the number of A- and B-constructors in x and y. Supercompilation without equality
indices does not build a superlinear speedup of the program.

Source program
Start: p(x, y) = f(x, y); pal(A(z)) = and(palA(z, Z()), pal(z));
f(x, y) = g(pal(x), pal(y), x, y); pal(B(z)) = and(palB(z, Z()), pal(z));
g(T, z, x, y) = gt(z, x, y); palA(A(x), y) = palA(x,A(Z));
gt(T, x, y) = x; palA(B(x), y) = palA(x,B(Z));
gt(F, x, y) = fmin1(y, y); palA(Z(), y) = ifA(y);
gf (T, x, y) = y; palB(A(x), y) = palB(x,A(Z));
gf (F, x, y) = f(fmin1(x, x), fmin1(y, y)); palB(B(x), y) = palB(x,B(Z));
fmin1(A(x), y) = fmin2(y, x); palB(Z(), y) = ifB(y);
fmin1(B(x), y) = fmin2(y, x); ifA(A(x)) = T ;
fmin2(A(y), x) = f(x, y); ifA(B(x)) = F ;
fmin2(B(y), x) = f(x, y); ifA(Z()) = F ;
and(T, x) = x; ifB(B(x)) = T ;
and(F, x) = F ; ifB(A(x)) = F ;

ifB(Z()) = F ;

Function fmin1 that removes the first letter from the list always has equal argu-
ments. However, equality is lost because the function call f(x, x) after execution of
fmin1 is generalized with f(x, y) which has unequal arguments.

Consider the fragment of the process tree in Fig. 8. The call of f[1] with two equal
arguments is generalized only with another call of f[1] with two equal arguments. Thus,
the functions are transformed to functions with fewer arguments, and an unary version
of f is generated. The residual program with the residual version of fmin2 calling the
unary version of f , and the unary version of f calling the binary version of g has run
time O(n2) where n = |x|.

Example 7. Now consider a negative example where the equality indexes do not help.
Let us drive the naive Fibonacci function (Example 3) from an initial configuration
f(x0). When the common order of driving is used by choosing the leftmost redex, re-
peated function calls are never observed in any configuration. To reveal the repeated
calls inherent in the Fibonacci function the following strategy of supercompilation
should be used.8 After each contraction of a configuration variable and making a step of
the redex, consider all function calls in the current configuration and make all steps that

8 To the best of the authors’ knowledge, it has not been implemented in any supercompiler.
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fmin2[2](A(x), x)

��
f[1](x, x)

��
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uu ++
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��

g[1,3,3](v0, v0, x, x)
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ss
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gt [2,2](T, x, x)

��

gf [2,2](F, x, x)

��
x f[1](fmin1[1](x, x), fmin1[1](x, x))

Fig. 8. A fragment of the updated process tree of Example 6.

become possible after substitution of the contraction, namely “normalize” the configu-
ration. Then the repeated call ff (x3) is found at the fifth step along the following path:

f(x0)
x0 = S(x1) −→ ff (x1)
x1 = S(x2) −→ add(f(x2), f(S(x2))

−→ add(f(x2),ff (x2))
x2 = S(x3) −→ add(ff (x3), add(f(x3), f(S(x3)))

−→ add(ff (x3), add(f(x3),ff (x3)))

(14)

The equality indexes do not capture the repeated call ff (x3) as it occurs as argu-
ments of two different calls to add . Moreover, with the common termination strategy
based on homeomorphic embedding, this configuration is not reached since the whistle
blows earlier and premature generalization is performed. Hence, to superlinearly speed-
up definitions, such as the Fibonacci example a new termination strategy is needed that
enables performance of more driving steps before generalization.

5.4 Discussion

The two parts of our method can be considered separately.
Equality indexes and their treatment as function names can be used to construct

a whistle that is more precise than the homeomorphic embedding relation used in the
standard generalization algorithm [24]. It may be combined together with known re-
finements of the homeomorphic embedding relation, e.g. [20], forcing the relation to
distinguish between strict and non-strict substitutions. In simple cases like Example 4,
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using the strict embedding alone can also avoid the problem of unselective generaliza-
tion. In case of comparing other configuration, e.g. f(x, y) and f(g(x, x, y), g(x, x, y)),
none of the refined embedding relations (E∗, Evar , E+) [20] can steer clear of the un-
selective generalization. Equality indices help to avoid the loss of sharing in this case.

Synchronization preserves term equalities including any syntactically lost due to
standard driving. The synchronization feature can be viewed as a very simple version
of jungle driving [21] that treats equal terms as one, but due to its simplicity and textual
representation, our approach does not require a change of driving.

Partial deduction and driving are transformation techniques that achieve their trans-
formational effects by nonlinear configurations [6]. Thus, our method may be not only
useful in supercompilation, but in the context of verification by abstraction-based partial
deduction [5] and other advanced program transformers [3].

6 Conclusion

We demonstrated how core supercompilation as it was originally defined by Valentin
Turchin and used in many works, is capable of achieving superlinear (up to exponential)
speedups on certain programs that repeatedly evaluate some function calls with the
same arguments. Although core supercompilation does not check for repeated subterms
in configurations explicitly (although it could), it contains an operation that captures
equal terms implicitly: most specific generalization.

We described two types of supercompilation: SCP (2) using identical folding with-
out online generalization, and SCP (1) with more sophisticated folding and generaliza-
tion strategies. Identical folding limits SCP (2) to linear speedups similar to the limit
of partial evaluation, but performs deeper transformations than partial evaluation due
to the unification-based information propagation of driving (e.g., SCP (2) passes the
KMP-test [4, 25] which partial evaluation does not [12]).

Folding is a powerful technique which in combination with other transformation
techniques can perform deep program optimizations (e.g., improve the naive Fibonacci
function [1]). The limitation of SCP (2) lies only in the restriction to identical fold-
ing, not in driving. We showed that even a core supercompiler using driving and most-
specific generalization could change the asymptotic time complexity of programs, and
dispelled the myth that supercompilation is only capable of linear-time program speedups.

A possible reason for the persistence of this myth is that it is sometimes forgotten
that generalization without checking the equality of subterms, e.g. the generalization of
f(g(x), g(x)) and f(h(a, b), h(a, b)) to f(x, y), is not most specific. The most specific
in this case being the generalization to f(x, x) with two substitutions {x := g(x)} and
{x := h(a, b)}. When these substitutions are residualized as assignments, they evaluate
the terms g(x) and h(a, b) only once. We refer to this phenomenon as msg-sharing.

Several methods more powerful than core supercompilation have been proposed
that achieve superlinear speedup: distillation [10], various forms of higher-level super-
compilation [9, 17], including old ideas of walk grammars by Valentin Turchin [26, 29]
which are grounds for further exploration.

Nevertheless, gradual extensions of core supercompilation (which may be termed
first-level supercompilation as they mainly operate on configurations rather than graphs,
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walk grammars, etc.) are also possible. Here are some ideas which have been investi-
gated or proposed, some of which have been supercompilation folklore for decades:

– Look for repeated subterms in each configuration and restructure the configuration
into a let-term if found.

– Collapsed jungle driving [21, 22] generalizes the previous idea and formalizes it
in terms of dag representation of configurations and operation of collapsing that
merges topmost nodes of equal subgraphs.

– Various techniques simpler than dags, which achieve the same effects, but on fewer
programs, can be added to existing supercompilers. We demonstrated one such
method consisting of the addition of equality indices and the synchronization of
terms after driving (Section 5). This method captures repeated subterms occurring
in the list of the arguments of the same function call. It is less powerful than the
use of dags, but it is much simpler because it deals with terms rather than dags plus
it works with the operations of driving, generalization, homeomorphic embedding,
whistles, and preserves termination proofs, while the respective operations on dags
and the proofs are to be developed afresh.

Future work In preparing this paper the authors found the topic of capturing repeated
function calls in first-level supercompilation was undeveloped deserving more atten-
tion. Possibly, the only systematic study in the context of supercompilation is [22].
The topic should be revisited in the context of modern research in supercompilation.
Another avenue to explore is “old chestnut” problems including the naive Fibonacci
function, the sum of factorials, etc. Solutions of their superlinear speedup by extended
core supercompilation should be presented and used as test cases to develop algorithmic
supercompilation strategies that reveal repeated subterms. One of the intriguing ques-
tions is the role of multi-result supercompilation [8, 14, 15, 18, 19] in these solutions,
and what can be done in the single-result case. First-level methods should be compared
with higher-level ones such as distillation, and their relative power and inherent limits
should be studied.
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Both equality saturation and supercompilation are methods of program trans-
formation. The idea of equality saturation [2] is to infer new equalities about pro-
gram functions from the initial ones (function definitions). These new equalities
can then be used to various ends: a new program may be extracted from these
equalities by choosing a representative set of equalities which will constitute the
new program’s definitions, or properties of the original program may be proved
by looking at the set of inferred equalities. Previously we have shown that equal-
ity saturation is applicable to functional languages by using transformations (in-
ference rules) borrowed from supercompilation (driving, more precisely), more
specifically we used it for the problem of proving equalities [1].

The idea of supercompilation [3] is to build a process tree representing all
possible paths of program execution and then transform it into a finite graph
which can be easily turned into a new program. Building a process tree is done
by using a combination of driving, generalization and folding.

A question might be asked: what is the relationship between equality satura-
tion and supercompilation? Can’t they be represented as special cases of some-
thing more general? Turns out that they can be (more or less): supercompilation
can be seen as the very same equality inference process that underlies equality
saturation, the only difference being that in supercompilation this inference is
strictly guided by heuristics, whereas in equality saturation transformations are
applied simply in breadth-first order. Indeed, a process tree can be represented
as a set of equalities between configurations, and process tree building operations
just infer new equalities.

Let’s consider a simple example of supercompilation in equality inference
style. We will use only equalities of the form f(x1, ..., xn) = E (i.e. function
definitions). Equalities of more general form E1 = E2 can be represented as mul-
tiple equalities of the aforementioned form by introducing auxiliary functions.
This representation is actually asymptotically more efficient when we have many
equalities.

? Supported by Russian Foundation for Basic Research grant No. 16-01-00813-a and
RF President grant for leading scientific schools No. NSh-4307.2012.9.
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Consider the following function definitions:

(1) add(x, y) = case x of {Z → y;S(x′) → sadd(x′, y)}
(2) sadd(x, y) = S(add(x, y))

(3) f(x, y, z) = add(add(x, y), z)

This is a classic addition associativity example. We will supercompile the func-
tion f to get a more optimal definition of the three-number sum function. f may
be considered as the root node of our process tree with the right hand side of (3)
being its configuration. Rules of supercompilation prescribe performing driving
first, which in this case is just unfolding of the add function using its definition
(1):

(4) f(x, y, z) = case add(x, y) of {Z → z;S(x′) → sadd(x′, z)}

To continue driving we should unfold add in the scrutinee position using (1) and
lift the inner case-of up which is done in one inference step:

(5) f(x, y, z) = case x of {Z → f1(y, z);S(x′) → f2(x′, y, z)}
(6) f1(y, z) = case y of {Z → z;S(y′) → sadd(y′, z)}
(7) f2(x′, y, z) = case sadd(x′, y) of {Z → z;S(x′′) → sadd(x′′, z)}

(Auxiliary functions f1 and f2 were introduced to split up the complex right hand
side of (5)). Now (5) has the form of variable analysis, which means that we are
done with f and can move on to the branches f1 and f2. f1 is not interesting
and driving it won’t actually add new equalities, so let’s consider only f2. In (7)
we should unfold sadd using (2) and reduce the case-of using the appropriate
branch (again, one inference step):

(8) f2(x′, y, z) = sadd(add(x′, y), z)

Unfolding of sadd leads to

(9) f2(x′, y, z) = S(f3(x′, y, z))

(10) f3(x′, y, z) = add(add(x′, y), z)

But the right hand side of (10) is the same as the right hand side of (3) (which is
a configuration seen earlier), so we should perform folding. In equality saturation
setting this is done by removing (10) and replacing f3 with f in every definition.
Here (9) is the only one we need to modify:

(9′) f2(x′, y, z) = S(f(x′, y, z))

To get a residual program we should traverse the definitions from f choosing
one definition for each function. Actually supercompilation requires us to choose
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the last ones (i.e. for f we take (5), not (4) or (3)):

(5) f(x, y, z) = case x of {Z → f1(y, z);S(x′) → f2(x′, y, z)}
(9′) f2(x′, y, z) = S(f(x′, y, z))

(6) f1(y, z) = case y of {Z → z;S(y′) → sadd(y′, z)}
(2) sadd(x, y) = S(add(x, y))

(1) add(x, y) = case x of {Z → y;S(x′) → sadd(x′, y)}

This example shows that performing supercompilation as process of equality
inference is possible in principle.

Equality saturation is guaranteed to eventually perform the same steps as
supercompilation since it works in breadth-first manner. This actually makes
equality saturation more powerful in theory. Indeed, it already subsumes multi-
result supercompilation since it doesn’t restrict application of different transfor-
mations to either driving or generalization. If we add merging by bisimulation,
which is essentially checking equivalence of two expression by residualizing them,
then we also get higher-level supercompilation. However, this power comes at a
price: without heuristic guidance we risk to be hit by combinatorial explosion.
And this actually happens in reality: our experimental prover was unable to
pass the KMP-test because of this, and what is worse, generalizing rules had to
be disabled which left our prover only with the simplest form of generalization,
namely removal of the outermost function call. That’s why it would be inter-
esting to make a hybrid between supercompilation and pure equality saturation
that would restrict transformation application, but not too much.

Currently our equality saturating prover has an experimental mode that per-
forms driving up to certain depth before performing ordinary equality satura-
tion. It allows our prover to pass the KMP-test as well as a couple of similar
examples, but results in regression on some other examples. Although this mode
shows that such a combination is possible, it is far from a fully fledged super-
compilation/equality saturation hybrid since it lacks most of supercompilation
heuristics and works in a sequential way (first driving, and only then breath-first
saturation). Therefore, two directions of future research may be named here:

– Developing heuristics to control generalization. Using generalizing transfor-
mations without restriction leads to combinatorial explosion. Direct appli-
cation of mgu from supercompilation doesn’t seem to be a good solution
because there may be too many pairs of terms due to multiresultness.

– Developing heuristics to control overall rewriting, mainly depth of driving. In
supercompilation whistles are used for this purpose, but traditional home-
omorphic embedding whistles are also hard to implement in multi-result
setting of equality saturation.

Since the main difficulty in using traditional heuristics seems to be with multi-
result nature of equality saturation, it is entirely possible that completely new
methods should be developed.
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Abstract. In spite of widespread discussion about connections between
biology and computation, one question seems notable by its absence:
Where are the programs? We propose a model of computation that
is at the same time biologically plausible: its functioning is defined by a
relatively small set of chemical-like reaction rules; programmable (by
programs reminiscent of low-level computer machine code); uniform:
new ”hardware” is not needed to solve new problems; universal: stored-
program: data are the same as programs, and so are executable, compil-
able and interpretable. The model is strongly Turing complete: a univer-
sal algorithm exists, able to execute any program, and not asymptotically
inefficient.

The model has been designed and implemented (for now in silico on a
conventional computer). We hope to open new perspectives on just how
to specify computation at the biological level.; and to provide a top-down
approach to biomolecular computation.

(Joint work with Jakob Grue Simonsen, Lars Hartmann, Søren Vrist.)

While this talk is not directly about metacomputation, programming lan-
guages will be visible in the model and the way it is developed. It is a modest
updating of a META 2010 talk Programming in Biomolecular Computation.

The topic may be interesting to META; and it is interesting to me since
the feedback received so far has mainly been from people responding to the
biological-modeling aspect (e.g., questions such as “are cells deterministic enough”,
“how would you implement it on a Petri dish”, etc.).

This talk has much to do with interpreters and (very) finite-state program
execution mechanisms, hopefully leading to some connections between

– Program specialisation and specialisation of biological cells (e.g., zygotes,
embryo,...)

– Self-application as in Futamura compared with biological self-repoduction

The topic is a bit wild, and as yet not many people have picked up on the
ideas. However I think there is a potential, and it will be will be interesting to
hear the metacomputation community’s viewpoints .
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Abstract. Program transformation techniques are commonly used to
improve the efficiency of programs. While many transformation tech-
niques aim to remove inefficiencies in the algorithms used in a program,
another source of inefficiency is the use of inappropriate datatypes whose
structures do not match the algorithmic structure of the program. This
mismatch will potentially result in inefficient consumption of the input
by the program. Previously, Mogensen has shown how techniques similar
to those used in supercompilation can be used to transform datatypes,
but this was not fully automatic. In this paper, we present a fully auto-
matic datatype transformation technique which can be applied in con-
junction with distillation. The objective of the datatype transformation
is to transform the original datatypes in a program so that the result-
ing structure matches the algorithmic structure of the distilled program.
Consequently, the resulting transformed program potentially uses less
pattern matching and as a result is more efficient than the original pro-
gram.

1 Introduction

Fold/unfold program transformation has been used to obtain more efficient ver-
sions of programs. One of the primary improvements achieved by such trans-
formation techniques is through the elimination of intermediate data structures
that are used in a given program, referred to as fusion – combining multiple func-
tions in a program into a single function thereby eliminating the intermediate
data structure used between them. Transformation techniques such as supercom-
pilation [9, 10] and distillation [2] are based on the unfold/fold transformation
framework and achieve such improvements. In particular, the distillation trans-
formation can potentially result in super-linear speedup of the distilled program.

While unfold/fold program transformation redefines functions for optimisa-
tion, the data types of the programs produced remain unaltered. For instance,
we observe that the programs produced by the distillation transformation are
still defined over the original data types. Thus, another source of inefficiency
in a program is the potential mismatch of the structures of the data types in
comparison to the algorithmic structure of the program [5].

For instance, consider the simple program defined in Example 1 which reduces
a given list by computing the sum of neighbouring pairs of elements in the list.
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Example 1 (Reduce Neighbouring Pairs).
reducePairs :: [Int]→ [Int]

reducePairs xs
where
reducePairs [] = []
reducePairs (x : []) = x : []
reducePairs (x1 : x2 : xs) = (x1 + x2) : (reducePairs xs)

Here, we observe that in order to pattern-match a non-empty list, reducePairs
checks if the tail is non-empty (in which case the second pattern (x : []) is
excluded), and then the tail is matched again in the third pattern (x1 : x2 : xs).
Also, the third pattern is nested to obtain the first two elements x1 and x2
in the list. While this pattern is used to obtain the elements that are used
in the function body, we observe that the structure of the pattern-matching
performed is inefficient and does not match the structure of the reducePairs
function definition. It desirable to have the input argument structured in such a
way that the elements x1 and x2 are obtained using a single pattern-match and
redundant pattern-matchings are avoided. One such definition of the reducePairs
function is presented in Example 2 on a new data type TreducePairs.

Example 2 (Reduce Neighbouring Pairs – Desired Program).
data TreducePairs ::= c1 | c2 Int | c3 Int Int TreducePairs
reducePairs xs
where
reducePairs c1 = []
reducePairs (c2 x) = x : []
reducePairs (c3 x1 x2 xs) = (x1 + x2) : (reducePairs xs)

In [6], Mogensen proposed one of the methods to address these issues by
creating data types that suit the structure of programs based on the supercom-
pilation transformation [10, 11]. The resulting transformed programs use fewer
constructor applications and pattern-matchings. However, the transformation
remains to be automated because functions that allow conversion between the
original and new data types were not provided.

In this paper, we present a data type transformation technique to automat-
ically define a new data type by transforming the original data types of a pro-
gram. The new transformed data type is defined in such a way that its structure
matches the algorithmic structure of the program. As a result, the transformed
input argument is consumed in a more efficient fashion by the transformed pro-
gram.

The proposed transformation is performed using the following two steps:

1. Apply the distillation transformation on a given program to obtain the dis-
tilled program. (Section 3)

2. Apply the proposed data type transformation on a distilled program to ob-
tain the transformed program. (Section 4)
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In Section 5, we demonstrate the proposed transformation with examples
and present the results of evaluating the transformed programs. In Section 6, we
discuss the merits and applications of the proposed transformation along with
related work.

2 Language

The higher-order functional language used in this work is shown in Definition 1.

Definition 1 (Language Grammar).
data T α1 . . . αM ::= c1 t

1
1 . . . t

1
N | . . . | cK tK1 . . . tKN Type Declaration

t ::= αm | T t1 . . . tM Type Component

e ::= x Variable
| c e1 . . . eN Constructor Application
| e0 Function Definition

where
f p11 . . . p

1
M x1(M+1) . . . x

1
N = e1

...
f pK1 . . . pKM xK(M+1) . . . x

K
N = eK

| f Function Call
| e0 e1 Application
| let x1 = e1 . . . xN = eN in e0 let–Expression
| λx.e λ–Abstraction

p ::= x | c p1 . . . pN Pattern

A program can contain data type declarations of the form shown in Definition 1.
Here, T is the name of the data type, which can be polymorphic, with type pa-
rameters α1, . . . , αM . A data constructor ck may have zero or more components,
each of which may be a type parameter or a type application. An expression e
of type T is denoted by e :: T .

A program in this language can also contain an expression which can be a
variable, constructor application, function definition, function call, application,
let-expression or λ-abstraction. Variables introduced in a function definition, let-
expression or λ-abstraction are bound, while all other variables are free. The free
variables in an expression e are denoted by fv(e). Each constructor has a fixed
arity. In an expression c e1 . . . eN , N must be equal to the arity of the constructor
c. For ease of presentation, patterns in function definition headers are grouped
into two – pk1 . . . p

k
M are inputs that are pattern-matched, and xk(M+1) . . . x

k
N

are inputs that are not pattern-matched. The series of patterns pk1 . . . p
k
M in a

function definition must be non-overlapping and exhaustive. We use [] and (:) as
shorthand notations for the Nil and Cons constructors of a cons-list.

Definition 2 (Context). A context E is an expression with holes in place
of sub-expressions. E[e1, . . . , eN ] is the expression obtained by filling holes in
context E with the expressions e1, . . . , eN .
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3 Distillation

Given a program in the language from Definition 1, distillation [2] is a technique
that transforms the program to remove intermediate data structures and yields
a distilled program. It is an unfold/fold-based transformation that makes use
of well-known transformation steps – unfold, generalise and fold [7] – and can
potentially provide super-linear speedups to programs.

The syntax of a distilled program de{} is shown in Definition 3. Here, ρ
is the set of variables introduced by let–expressions that are created during
generalisation. These bound variables of let-expressions are not decomposed by
pattern-matching in a distilled program. Consequently, de{} is an expression that
has fewer intermediate data structures.

Definition 3 (Distilled Form Grammar).

deρ ::= x deρ1 . . . de
ρ
N Variable Application

| c deρ1 . . . de
ρ
N Constructor Application

| deρ0 Function Definition
where
f p11 . . . p

1
M x1(M+1) . . . x

1
N = deρ1

...
f pK1 . . . pKM xK(M+1) . . . x

K
N = deρK

| f x1 . . . xM x(M+1) . . . xN Function Application
s.t. ∀x ∈ {x1, . . . , xM} · x 6∈ ρ

| let x1 = deρ1 . . . xN = deρN in de
ρ ∪ {x1,...,xN}
0 let–Expression

| λx.deρ λ–Abstraction

p ::= x | c p1 . . . pN Pattern

4 Data Type Transformation

A program in distilled form is still defined over the original program data types.
In order to transform these data types into a structure that reflects the structure
of the distilled program, we apply the data type transformation proposed in
this section on the distilled program. In the transformation, we combine the
pattern-matched arguments of each function f in the distilled program into a
single argument which is of a new data type Tf and whose structure reflects the
algorithmic structure of function f .

Consider a function f , with arguments x1, . . . , xM , x(M+1), . . . , xN , of the
form shown in Definition 4 in a distilled program. Here, a function body ek
corresponding to function header f pk1 . . . p

k
M xk(M+1) . . . x

k
N in the definition of

f may contain zero or more recursive calls to function f .



62 Venkatesh Kannan and G. W. Hamilton

Definition 4 (General Form of Function in Distilled Program).

f x1 . . . xM x(M+1) . . . xN
where
f p11 . . . p

1
M x(M+1) . . . xN = e1

...
...

f pK1 . . . pKM x(M+1) . . . xN = eK

The three steps to transform the pattern-matched arguments of function f
are as follows:

1. Declare a new data type for the transformed argument:
First, we declare a new data type Tf for the new transformed argument. This
new data type corresponds to the data types of the original pattern-matched
arguments of function f . The definition of the new data type Tf is shown in
Definition 5.

Definition 5 (New Data Type Tf).

data Tf α1 . . . αG ::= c1 T
1
1 . . . T

1
L (Tf α1 . . . αG)11 . . . (Tf α1 . . . αG)1J

...
| cK TK1 . . . TKL (Tf α1 . . . αG)K1 . . . (Tf α1 . . . αG)KJ

where
α1, . . . , αG are type parameters of the data types of pattern-matched

arguments.

∀k ∈ {1, . . . ,K}·
ck is a fresh constructor for Tf corresponding to pk1 . . . p

k
M of the

pattern-matched arguments.

f pk1 . . . p
k
M x(M+1) . . . xN = Ek



f x11 . . . x

1
M x1(M+1) . . . x

1
N ,

. . . ,
f xJ1 . . . x

J
M xJ(M+1) . . . x

J
N




{
(z1 :: T k1 ), . . . , (zL :: T kL)

}
= fv(Ek) \ {x(M+1), . . . , xN}

Here, a new constructor ck of the type Tf is created for each set pk1 . . . p
k
M

of the pattern-matched inputs x1 . . . xM of function f that are encoded. As
stated above, our objective is to transform the arguments of function f into
a new type whose structure reflects the recursive structure of f . To achieve
this, the components bound by constructor ck correspond to the variables in
pk1 . . . p

k
M that occur in the context Ek and the transformed arguments of the

recursive calls to function f .

2. Define a function to build the transformed argument:
Given a function f of the form shown in Definition 4, we define a function
encodef , as shown in Definition 6, to build the transformed argument for
function f .
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Definition 6 (Definition of Function encodef).
encodef x1 . . . xM
where
encodef p

1
1 . . . p

1
M = e′1

...
...

encodef p
K
1 . . . pKM = e′K

where
∀k ∈ {1, . . . ,K}·
e′k = ck z

k
1 . . . z

k
L (encodef x

1
1 . . . x

1
M ) . . . (encodef x

J
1 . . . x

J
M )

{
zk1 , . . . , z

k
L

}
= fv(Ek) \ {x(M+1), . . . , xN}

f pk1 . . . p
k
M x(M+1) . . . xN = Ek



f x11 . . . x

1
M x1(M+1) . . . x

1
N ,

. . . ,
f xJ1 . . . x

J
M xJ(M+1) . . . x

J
N




Here, the original arguments x1 . . . xM of function f are pattern-matched
and consumed by encodef in the same way as in the definition of f . For
each pattern pk1 . . . p

k
M of the arguments x1 . . . xM , function encodef uses the

corresponding constructor ck whose components are the variables zk1 , . . . , z
k
L

in pk1 . . . p
k
M that occur in the context Ek and the transformed arguments of

the recursive calls to function f .
3. Transform the distilled program :

After creating the transformed data type Tf and the encodef function for
each function f , we transform the distilled program as shown in Definition
7 by defining a function f ′, which operates over the transformed argument,
corresponding to function f .

Definition 7 (Definition of Transformed Function Over Transformed
Argument).
f ′ x x(M+1) . . . xN
where
f ′
(
c1 z

1
1 . . . z

1
L x11 . . . x

J
1

)
x(M+1) . . . xN = e′1

...
...

f ′
(
cK zK1 . . . zKL x1K . . . x

J
K

)
x(M+1) . . . xN = e′K

where
∀k ∈ {1, . . . ,K}·
e′k = Ek

[
f ′ x1k x

1
(M+1) . . . x

1
N , . . . , f

′ xJk x
J
(M+1) . . . x

J
N

]

f pk1 . . . p
k
M x(M+1) . . . xN = Ek



f x11 . . . x

1
M x1(M+1) . . . x

1
N ,

. . . ,
f xJ1 . . . x

J
M xJ(M+1) . . . x

J
N




The two steps to transform function f into function f ′ that operates over the
transformed argument are:
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(a) In each function definition header of f , replace the original pattern-
matched arguments with the corresponding pattern of their transformed
data type Tf .
For instance, a function header f p1 . . . pM x(M+1) . . . xN is transformed to
the header f ′ p x(M+1) . . . xN , where p is the pattern created by encodef
corresponding to the original pattern-matched arguments p1, . . . , pM .

(b) In each call to function f , replace the original arguments with their cor-
responding transformed argument.
For instance, a call f x1 . . . xM x(M+1) . . . xN is transformed to the func-
tion call f ′ x x(M+1) . . . xN , where x is the transformed argument corre-
sponding to the original arguments x1, . . . , xM .

4.1 Correctness

The correctness of the proposed transformation can be established by proving
that the result computed by each function f in the distilled program is the same
as the result computed by the corresponding function f ′ in the transformed
program. That is,

(
f x1 . . . xM x(M+1) . . . xN

)
=
(
f ′ x x(M+1) . . . xN

)

where x = encodef x1 . . . xM

Proof:
The proof is by structural induction over the transformed data type Tf .

Base Case:
For the transformed argument xk = ck z

k
1 . . . z

k
L computed by encodef p

k
1 . . . p

k
M ,

1. By Definition 4, L.H.S. evaluates to ek.
2. By Definition 7, R.H.S. evaluates to ek.

Inductive Case:
For the transformed argument xk = ck z

k
1 . . . z

k
L x1k . . . xJk which is computed

by encodef p
k
1 . . . p

k
M ,

1. By Definition 4, L.H.S. evaluates to Ek

[
f x11 . . . x

1
M x1(M+1) . . . x

1
N , . . . ,

f xJ1 . . . x
J
M xJ(M+1) . . . x

J
N

]
.

2. By Definition 7, R.H.S. evaluates to Ek

[
f ′ x1k x

1
(M+1) . . . x

1
N , . . . ,

f ′ xJk x
J
(M+1) . . . x

J
N

]
.

3. By inductive hypothesis,
(
f x1 . . . xM x(M+1) . . . xN

)
=
(
f ′ x x(M+1) . . . xN

)
.
ut

5 Examples

We demonstrate and evaluate the data type transformation presented in this
paper using two simple examples, including the program introduced in Example
1, which are discussed in this section.
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5.1 Reduce Neighbouring Pairs

The reducePairs program presented in Example 1 does not use any intermediate
data structures. Consequently, the result of applying the distillation transfor-
mation yields the same program. Following this, Example 3 presents the trans-
formed data type (TreducePairs), the transformation function (encodereducePairs)
and the transformed program (reducePairs ′) obtained for the reducePairs pro-
gram in Example 1.

Example 3 (Reduce Neighbouring Pairs – Transformed Program).
data TreducePairs a ::= c1

| c2 a
| c3 a a (TreducePairs a)

encodereducePairs [] = c1
encodereducePairs (x : []) = c2 x
encodereducePairs (x1 : x2 : xs) = c3 x1 x2 (encodereducePairs xs)

reducePairs′ xs
where
reducePairs′ c1 = []
reducePairs′ (c2 x) = x : []
reducePairs′ (c3 x1 x2 xs) = (x1 + x2) : (reducePairs′ xs)

5.2 Reduce Trees

To demonstrate our data type transformation, we present another program in
Example 4 that performs a reduction over a list of binary trees. Since this defi-
nition does not contain intermediate data structures, the result of applying the
distillation transformation is the same program.

Example 4 (Reduce Trees – Original/Distilled Program).
data BTree a ::= L

| B a [BTree a] [BTree a]

reduceTrees :: [BTree Int]→ Int

reduceTrees ts
where
reduceTrees [] = 0
reduceTrees (L : xs) = reduceTrees xs
reduceTrees

(
(B x lts rts) : xs

)
= x+ (reduceTrees lts)

+(reduceTrees rts) + (reduceTrees xs)

Example 5 presents the transformed data type (TreduceTrees), the transfor-
mation function (encodereduceTrees) and the transformed program (reduceTrees ′)
obtained for the distilled reduceTrees program using the proposed transforma-
tion.
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Example 5 (Reduce Trees – Transformed Program).
data TreduceTrees a ::= c1

| c2 (TreduceTrees a)
| c3 a (TreduceTrees a) (TreduceTrees a) (TreduceTrees a)

encodereduceTrees [] = c1
encodereduceTrees (L : xs) = c2 (encodereduceTrees xs)
encodereduceTrees

(
(B x lts rts) : xs

)
= c3 x (encodereduceTrees lts)

(encodereduceTrees rts)
(encodereduceTrees xs)

reduceTrees′ ts
where
reduceTrees′ c1 = 0
reduceTrees′ (c2 xs) = reduceTrees′ xs
reduceTrees′ (c3 x lts rts xs) = x+ (reduceTrees′ lts)

+(reduceTrees′ rts) + (reduceTrees′ xs)

5.3 Evaluation

For the two example programs presented in this section, we compare the exe-
cution times of the transformed functions reducePairs ′ and reduceTrees ′ against
those of their original versions reducePairs and reduceTrees, respectively, for
different input sizes. The resulting speedups achieved by these transformed pro-
grams are illustrated in Figure 1. Here, the input sizes for the reduceTrees pro-
gram are the number of values that are present in the input tree that is reduced.

We observe that, as a result of the reduced pattern-matchings performed in
the transformed programs, the transformed functions consume the transformed
arguments more efficiently resulting in a speedup of 1.26x – 1.67x for the two
examples evaluated in this section.

Additionally, Figure 2 illustrates the cost of transforming the arguments (us-
ing the encodef functions) in comparison with the total execution time of the
transformed program.

We observe that the cost of transforming the arguments is non-trivial. How-
ever, given the relation between the original data type and the new transformed
data type, which is defined by the encodef function, the user can benefit by
producing the inputs in the proposed transformed data type and by using the
efficient transformed program.

6 Conclusion

6.1 Summary

The data type transformation presented in this paper allows us to modify the
program data types into a structure that reflects the structure of the program
in distilled form. This is achieved by combining the original pattern-matched ar-
guments of each function in the distilled program. The transformation combines
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Fig. 1. Speedups of Transformed Programs vs. Distilled Programs

Fig. 2. Cost Centre of Transformed Programs

groups of patterns that are matched with the arguments into a single pattern
for the transformed argument. By using the transformation function (encodef )
that specifies the correspondence between the original data types and the trans-
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formed data type, the user can produce a transformed argument which requires
less pattern-matching. Consequently, the transformed program can potentially
consume the input data in an optimised fashion.

Furthermore, this data type transformation can also be used to facilitate
automatic parallelisation of a given program. By defining algorithmic skeletons
that operate over the newly defined transformed data type, we can identify
instances of the skeletons – polytypic [4] and list-based [3] – in the transformed
program. Following this, we can use efficient parallel implementations of the
skeletons to execute the transformed program on parallel hardware.

6.2 Related Work

The importance of such data type transformation methods has been discussed in
other works such as [1,5]. Creating specialised data types that suit the structure
of a program can provide flexibility to statically typed languages that is similar
to dynamically typed languages.

Mogensen presented one of the initial ideas in [5] to address data type trans-
formation using constructor specialisation. This method improves the quality of
the transformed programs (such as compiled programs) by inventing new data
types based on the pattern-matchings performed on the original data types. It
is explained that such data type transformation approaches can impact the per-
formance of a program that uses limited data types to encode a larger family of
data structures as required by the program.

To improve on Mogensen’s work in [5], Dussart et al. proposed a polyvariant
constructor specialisation in [1]. The authors highlight that the earlier work by
Mogensen was monovariant since each data type, irrespective of how it is dy-
namically used for pattern-matching in different parts of a program, is statically
analysed and transformed. This monovariant design potentially produces dead
code in the transformed programs. Dussart et al. improved this by presenting
a polyvariant version where a data type is transformed by specialising it based
on the context in which it is used. This is achieved in three steps: (1) compute
properties for each pattern-matching expression in the program based on its con-
text, (2) specialise the pattern-matching expression using these properties, and
(3) generate new data type definitions using the specialisations performed.

More recently, in [6], Mogensen presents supercompilation for data types.
Similar to the unfold, fold and special-casing steps used in the supercompilation
transformation, the author presents a technique for supercompiling data types
using the three steps designed for data types. This technique combines groups of
constructor applications in a given program into a single constructor application
of a new data type that is created analogous to how supercompilation combines
groups of function calls into a single function call. As a result, the number of
constructor applications and pattern-matchings in the transformed program are
fewer compared to the regular supercompiled programs. What remains to be
done in this technique is the design of functions that allow automatic conversion
between the original and supercompiled data types. We address this aspect in
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our proposed transformation technique by providing automatic steps to declare
the transformed data type and to define the transformation function.

In [8], Simon Jones presents a method to achieve the same objective of match-
ing the data types used by a program and the definition of the program. The
main difference to this approach is that their transformation specialises each
recursive function according to the structure of its arguments. This is achieved
by creating a specialised version of the function for each distinct pattern. Fol-
lowing this, the calls to the function are replaced with calls to the appropriate
specialised versions. To illustrate this transformation, consider the following def-
inition of function last, where the tail of the input list is redundantly checked by
the patterns (x : []) and (x : xs).

last [] = error “last”
last (x : []) = x
last (x : xs) = last xs

Such a definition is transformed by creating a specialised version of the last
function based on the patterns for the list tail, resulting in the following definition
for the last function which avoids redundant pattern-matching.

last [] = error “last”
last (x : xs) = last′ x xs

where
last′ x [] = x
last′ x (y : ys) = last′ y ys

This transformation was implemented as a part of the Glasgow Haskell Compiler
for evaluation and results in an average run-time improvement of 10%.
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Abstract. Program slicing can be used to improve software reliability.
It enables identification and checking of critical points by removing pro-
gram parts that do not influence them. The standard slicing method
computes the dependencies of an entire program as a prerequisite to
the slicing. Demand-driven techniques such as our work Predicate Con-
trol Block (PCB)-based slicing computes only the dependencies affecting
critical points. This improves the performance for single slices.

This paper extends PCB-based slicing to efficiently compute several slices
from the same code. This is done by storing the computed data dependen-
cies in a form of graph to reuse them between individual slices. We also
show how PCB-based slicing can be done interprocedurally in a demand-
driven fashion. Moreover, we describe a filtering technique that reduces
the exploration of irrelevant paths. These two improvements enhance the
algorithm performance, which we show using synthetic benchmarks.

Keywords: Program Slicing, Reliable Software, Predicate Control Block

1 Introduction

Backward program slicing extracts the set of statements (so-called ”slice”) that
may affect a slicing criterion. A slicing criterion refers to the value of a particular
variable at a program location. In considering critical points in reliable systems
as slicing criteria, backward slicing enables us to study many aspects related to
those points. For a given slicing criterion, the slicing computes the statements,
inputs and conditions that possibly affect the slicing criterion. The effect can
appear by two ways: Control Dependence, which occurs where a predicate con-
trols the possible execution of statements and Data Dependence which occurs
when a variable updated at a statement is used in another.

Software programs are getting more complex and it is important for those
programs to be reliable. Software reliability refers to the continuity of correct
service [14]. To deliver a correct service, the cornerstone is in being fault-free. To
find faults, the static analysis methods such as path simulation or the verification
methods such as model checking are used. Larson states in [15] that “A major
problem with path-based defect detection systems is path explosion”. Model
checking performs automatic exhaustive testing and Choi et al states in [3] that
it might suffer from state-space explosion. The fact that program slicing reduces
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7)  if(senA > 25)
8)  else
9)  if(senB < 50)
10) else

1) if (btn==ON)
2)      v:=knb/2;
3) else v:= -1;
4) out = v;
5) out1 = out; 
6) out2 = out; 

Button Knob 

btn knb v1

Button Button

v2

Temperature 

Sensor 

Light 

Sensor 

out2 ActA ActB 

senA senB

11) procA(); 
12) if(btnA==ON) x=1 ; 
13) else  procB(); 
14) out = procC(); 

btnA btnB 

out out1

ActA = v1; 
ActA = NULL; 
ActB = v2; 
ActB = NULL;

Fig. 1: Simple Control Unit

the program size is important because it can help alleviate the path and state-
space explosion.

Program slicing can also be used to check for possible dependencies. consider
the simple control unit in Fig. 1. Assume that ActA is only to be controlled by
v1 and senA, the dependence on any other input being considered a fault. For
studying this system with respect to ActA, we choose ActA as a slicing criterion.
The slice taken will show that senA may be dependent on v1 and senA but is
surely not dependent on senB or v2, ensuring that the system is correct with
respect to input dependencies.

The unit in Fig. 1 has six inputs. If we suppose that each button has 2
states, each knob and sensor has 10 states, then we need 32K states to cover
all the input combinations. If the aim is to study ActA, then it is enough to
generate the states relevant to ActA. These relevant states are computed from
the inputs that ActA is dependent on. Notice that the slice of the control unit with
respect to ActA consists of the program lines: {1,2,3,4,6,7,8} and the program
inputs: {buttonA,Knob1,v1,senA}. In this case the number of states are: 400.
Apparently, the state-space is reduced significantly.

The most common slicing technique is designed on the program representa-
tion Program Dependence Graph (PDG) [11]. The PDG consists of nodes and
edges which represent statements and direct data and control dependencies re-
spectively. To construct a PDG, a deep comprehensive analysis is performed to
compute all dependencies in prior of the slicing. This analysis is reported by
many authors [3, 4, 6] as very time and space consuming.

Demand-driven approaches compute data and control dependencies on de-
mand during the slicing operation and not in prior. This gets rid of computing un-
related dependencies which cause unnecessary computations. Our previous work
in Predicate Control Block(PCB)-Based slicing [1] is an example of a demand-
driven approach. PCB is a basis of program representations that models well-
structured, inter-procedural and jump-free programs. This new slicing method
is designed for applications that are compliant with MISRA-C and SPARK,
which are software development guidelines for writing reliable and safety-critical
applications in C and Ada languages respectively.
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Demand-driven slicing approaches focus on eliminating unrelated dependen-
cies, but these dependencies are not the only source of unnecessary computa-
tions. In computing data dependencies relevant to a particular program point p,
all backward or forward paths from p have to be explored. Most of these paths
do not include any relevant information. e.g. in Fig. 1 for ActA point, we explore
(9) and (10) and this is wasteful.

Sometimes, many critical points in a program need studying. Thus, a slice
for each point has to be produced. In demand-driven slicing approaches such as
PCB-based approach, when a source code is sliced many times in accordance
to many individual slicing criteria, the data dependencies involved in each slice
have to be computed from scratch even though some or all of them were already
computed for a previous slice. These computations are unnecessary because they
already were done before. e.g. in our example, (4) is dependent on (2) and (3)
which are dependent on (1). These dependencies affect out1 and out2. If out1

and out2 are two individual points of interest, then we must compute these
dependencies for each of them.

The contributions of this paper are:

1. Extending the PCB-based algorithm to reuse information from previous slic-
ing, making it more efficient when slicing the same code several times for
individual slicing criteria.

2. Extending the PCB-based algorithm to the interprocedural case. This was
sketched in [1]: here we explain the full method.

3. Clarifying some parts of the PCB-Based slicing algorithm presented in [1].
This includes the formal definition of how to represent programs by PCBs,
and how to handle the communication of data flow information between dif-
ferent program parts efficiently. Thus reducing the exploration of irrelevant
paths.

The rest of the paper is organized as follows. Section 2 introduces essential
background. In Section 3 we describe PCBs and summarizes PCB-Based slicing
approach in [1]. We illustrate how the data dependencies are saved and retrieved
between slices in Section 4, while in Section 5 the communications between
PCBs are filtered. Section 6 presents the two-modes algorithm. Section 7 onfly
interprocedual slicing, In Section 8 we give an account for our experimental
evaluation. Section 9 gives an account for related work, Section 10 concludes the
paper and Section 11 acknowledgments

2 Preliminaries

2.1 Model Language

WHILE is a simplified model language for languages for safety-critical applica-
tions, such as SPARK Ada and MISRA-C. A program is a statement (s) con-
sisting of a sequence of statements. WHILE statements are classified into two
main types; elementary and conditional statements. Elementary statements are
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assignment, skip, boolean expressions and the special in child explained later.
Conditional statements are if, while and ifelse statements.

We assume that each elementary and conditional statement is uniquely la-
beled in a program. Label is the set of global labels in a program and ` ∈
Label. Let a denote arithmetic expressions and b boolean expressions. The ab-
stract syntax of the WHILE language is:

cs ::=[if [b]` then s′]`
′ | [if [b]`,`

′
then s′ else s′′]`

′′ | [while [b]` do s′]`
′

es ::=[x := a]` | [b]` | [skip]` | [in child]`

s ::= es | s′; s′′ | cs

2.2 Strongly Live Variable (SLV) Analysis

A data dependence relation is a relation on program labels relating points of
variable definitions with their uses. We write `

v−→ `′ to signify that ` is data
dependent on `′, i.e., that the statement labeled `′ defines a variable v used by
the statement labeled `.

The data dependence relation has two sides: Definition and Use. The Defi-
nition is a statement where a variable (v) is updated and then reaches without
being redefined to a statement using v (Use). Accordingly, Use is data depen-
dent on Definition. In this context, the data dependence is symbolized by → as:

`
v−→ `′ ⊆ Label × V ar × Label (1)

where ` is data dependent on `′ in terms of the variable v. Sometimes, v is not
specified in this relation.

A variable v is live at program point p if there is a definition free path from a
use of v to p. A live variable analysis is a backward analysis [10] that computes
the set of live variables associated with each program point. Strongly live variable
analysis is a restriction of live variable analysis to an initial set of strong live
variables, which are the variables of interest [10]. Thus, a variable is strongly
live at program point p if there is a definition free path to a use of v and this
use defines another strongly live variable.

SLV is a data flow analysis [10]. It generates a variable used in a particular
statement as a SLV, propagates it backward untill reaching a statement defining
it where it is killed. Thus, SLV analysis can be utilized to find the definitions that
affect the used variables in a particular statement (use). This mechanism which
computes from a use the set of definitions affecting it, is the main requirement
in computing dynamically data dependence facts by backward slicing.

As a traditional dataflow method, SLV analysis relies on functions and equa-
tions; gen and kill functions generate and remove SLVs respectively from in-
dividual elementary statements, and the equations compose a mechanism to
propagate backward the SLVs. Since these equations are not used in PCB-based
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slicing, they are not presented here. The functions are defined as follows:

kill(x := a) = {x}, kill(b) = ∅, kill(skip) = ∅, kill(in child) = Var

gen(x := a) = FV (a), gen(b) = FV (b), gen(skip) = ∅, gen(in child) = ∅
(2)

FV (a) denotes the set of program variables that appear in the expression a. Var
is the set of variables in a program.

3 PCB-Based Slicing

This section recaptures the notions of Predicate Control Blocks (PCBs), PCB
graphs and PCB based slicing as introduced in [1]. With respect to previous work
the section contributes by describing the derivation of PCBs and PCB graphs
in a more detailed manner.

3.1 Predicate Control Block Graphs

A PCB [1] refers to the encapsulation of a predicate and the set of elementary
statements which are controlled directly by this predicate.

p ::= {[b, es1, . . . , esn], type} (3)

In addition to a predicate and a sequence of statements, PCBs carry types,
type, signifying whether the PCB is linear, L, or cyclic, C. Intuitively, linear
PCBs correspond to conditional statements, such as if, and cyclic PCBs corre-
spond to iterative statements, such as while.

In the following let ++ denote concatenation of sequences and let : denote the
standard cons operator, i.e., b : [es1, · · · ] = [b, es1, · · · ]. Further, we lift sequence
indexing to PBCs where p[0] = b, and p[n] = esn for p = {[b, es1, . . . , esn], type}.

A PCB graph is a pair (φ, ε), consisting of a map from labels to PCBs, φ,
and a set of edges, ε, represented as pairs of labels. Following [1] we refer to the
edges of the PCB graph as interfaces, and write `1 ↪→ `2 instead of (`1, `2) ∈ ε,
whenever the PCB graph is given by the context.

The top-level translation of a program s to a PCB graph is defined as follows
for any ` not in s.

λ(s) = (φ[` 7→ {true` : es, L}, ε), where es, (φ, ε) = λ`(s)

The bulk of the translation is done by λ`(s), defined in Figure 2, where final
returns the last label in a sequence of elementary statements. Given a statement
s the λ`(s) returns a linearized translation of s together with the PCB graph
resulting from the translation. It might be worth pointing out a few key points of
the algorithm. First, each PCB inherits the label of its predicate. Second, since
if..else statements generate two PCBs, their predicates carry two distinct labels.
Third, the place of each conditional statement is replaced by a placeholder (skip
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for if or while; in child for if..else)1, whose label is the label of the original
statement. The translation of compound statements works by first translating
the parts, and then joining and extending the results to a new PCB graph.

λ`p([x := a]`) = [x := a]`, (∅, ∅)
λ`p([skip]`) = [skip]`, (∅, ∅)
λ`p([if b` then s]`

′
) = [skip]`

′
, (φ′, ε′)

where es, (φ, ε) = λ`(s) and φ′ = φ[` 7→ {b` : es, L}]
and ε′ = ε ∪ {`p ↪→ `, final(es) ↪→ `′}

λ`p([while b` do s]`
′
) = [skip]`

′
, (φ′, ε′)

where es, (φ, ε) = λ`(s) and φ′ = φ[` 7→ {b` : es, C}]
and ε′ = ε ∪ {`p ↪→ `, final(es) ↪→ `′}

λ`p([if b`,`
′
then s else s′]`

′′
) = [in child]`

′′
, (φ′′, ε′′)

where es, (φ, ε) = λ`(s) and es′, (φ′, ε′) = λ`′(s
′)

and φ′′ = (φ ∪ φ′)[` 7→ {b` : es, L}, `′ 7→ {¬b`′ : es′, L}]
and ε′′ = ε ∪ ε′ ∪ {`p ↪→ `, final(es) 7→ `′′, `p ↪→ `′, final(es′) ↪→ `′′}

λ`p(s; s′) = es++ es′, (φ ∪ φ′, ε ∪ ε′)
where es, (φ, ε) = λ`p(s) and es′, (φ′, ε′) = λ`′p(s′)

and `′p = final(es)

Fig. 2: Computation of PCB graphs

To illustrate the algorithm consider the program in Figure 3. The algorithm
works recursively; in order to translate the top level program, the while and
the if must be translated. In the reverse order of the recursive calls, the if is
translated first, which gives P7. No interfaces are created, since the body of
the if does not contain any compound statements. The resulting PCB graph is
returned to the translation of the body of the while, and extended with P4 and
interfaces `3 ↪→ `7 and `8 ↪→ `4. This gives the PCB graph rooted in P4, which is
returned to the top-level translation and the graph. The final result is produced
by adding P0 and interfaces `1 ↪→ `4 and `9 ↪→ `3.

3.2 PCB-Based Slicing Approach

A slicing criterion is a pair of < `, v > where ` is a global label and v is a variable.
if ` belongs to the PCB P , then < `, v > is considered as a local problem in P .
< `, v > is solved in P by propagating it backward among the local statements
in P . The propagation starts from ` and its aim is to find the statement in P
that influences v at `. Since the propagation relies on the order of the internal
statements in the PCB, it is important to express the local problem by its local

1 The reason of using placeholders will be explained in Section 5
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index (i) in P rather than its global label `. The local slicing problem in the
PCB does not have more than one local solution because each PCB has a unique
free-branching path.

𝓁3 

𝓁6 

[x:=1]𝓁1;  

[a:=7]𝓁2; 

while [x < 20]𝓁4 do 

        [m:=5]𝓁5;  

   if[a>8]𝓁7 then   

      [t:=20]𝓁8;

  [x:=x+1]𝓁9; 

[k:=x]𝓁10; 

[t:=x]𝓁11;  

[r:=m]𝓁12; 

[skip]𝓁13;  

(A) 

3  

4  

2  

(B) 

L 

  P0    P4  P7 

(0) [true]𝓁0  (0) [x < 20] 𝓁4  (0) [a>8] 𝓁7 

(1) [x:=1]𝓁1  (1) [m:=5] 𝓁5  (1) [t:=20] 𝓁8 

(2) [a:=7] 𝓁2  (2) [skip] 𝓁6  L 

(3) [skip] 𝓁3  (3) [x:=x+1] 𝓁9    

(4) [k:=x] 𝓁10  C    

(5) [t:=x] 𝓁11       

(6) [r:=m] 𝓁12       

(7) [skip] 𝓁13       

  

1  

Fig. 3: Example 1

Local slicing problems of the PCB are stored in a single set (S). The PCB
works as a standalone process that solves its local problems. Local problems are
solved individually. While solving a problem, this problem might be reproduced
in other PCBs, killed and new local problems might be generated. This cycle of
reproduction, killing, and generation of local problems are iteratively repeated
until no more local problem is available in any PCB.

The SLV query is solved by using kill and gen SLV functions. kill(s) gives
the variables that s defines. gen(s) generates new local slicing problems from s.
Therefore and henceforth, local slicing problem are named as SLV query.

Since the PCB represents a branch-free path, there is no use from using con-
ventional fixed point iterations, which is designed to work with tree of branches
and requires a set existing at each program point to save the SLVs reaching
this point. The PCB has a single set to preserve its SLV queries and each SLV
query is solved individually. The PCB encodes the direct control dependency.
This encoding enables to capture immediately the control dependencies from the
predicate of the PCB and the predicates of parents PCBs.

Suppose S(P ) is the single set of P . Each SLV query < i, v > is fetched
individually from S(P ). The first parameter which should be calculated for this
query is its end index e. In linear PCBs, e = 0. Otherwise, e = i + 1. Then,
< i, v > proceeds backward from P [i] toward P [e]. In circular PCBs, when
< i, v > reaches P [0], it propagates backward by jumping to the last label in P
and goes on backward until reaching P [i+ 1]. In this context, the index of each
visited statement in P will be j. Visiting P [j] by < i, v > causes one of these
three cases:

case 1: if v * kill(P [j]) and j 6= e, then S(P ) remains as is
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case 2: if v ⊆ kill(P [j]) then < i, v > is removed from S(P ) and does not
proceed more. if P [j] was not sliced before, then the variables used in P [j]
will be generated as SLV queries and added to S(P ). As well, P [j] is sliced.

case 3: if v * kill(P [j]) and j = e, then < i, v > is removed from S(P ) and
does not proceed more.

Example 1: In Fig. 3; Suppose < `13, r > is a global slicing criterion. It is
translated to the SLV query: < 7, r > in S(P0). Since P0 is a linear PCB, e = 0.
So, < 7, r > is solved locally in P0 by being propagated it from P0[7] to P0[0].
The first statement visited by < 7, r > is P0[7]. Considering that kill(P0[7]) = ∅
S(P0) remains as is. Next, < 7, r > visits P0[6]. Since kill(P0[6]) = r, P0[6]
is sliced, a new SLV query < 5,m > is generated, < 7, r > is removed from
S(P0) and it no longer proceeds. Similarly, < 5,m > is fetched and it visits the
statements from P0[5] to P0[0]. Since none of them kills m, < 5,m > is removed
from S(P0) after visiting P0[0]�

Notice that the value of m at P0[6] is affected also by P4[1]. Therefore, a new
slicing problem has to be created in P4 according to the following rule:

Suppose P and P ′ are two PCBs connected by P ′[j′] ↪→ P [j]. When an SLV
query < i, v > visits P [j] and not being killed at it, < i, v > is reproduced in P ′

as < j′, v >.

Example 2: In Fig. 3, P0 is connected to P4 by P4[3] ↪→ P0[3]. When < 5,m >
visits P0[3], it is reproduced in P4 as < 3,m >, which is processed in P4 by
visiting P4[3], P4[2] and P4[1]. At P4[2], it is reproduced in P7 as < 1,m > and
at P4[1] it is killed. The query < 1,m > in P7 does not have a local solution �

Each interface ` ↪→ `′ associates to a set Rm(` ↪→ `′), which saves the variable
part of each query reproduced through ` ↪→ `′. Rm works as a blacklist whose
elements are not allowed to be reproduced again through. This prevention is
important in avoiding a possible non-termination which could occur when an
SLV query < i, v > is generated in a cyclic PCB and neither this PCB nor its
child defines v. As a result, v would continuously be propagated between the
parent and its child.

For if and while conditional statement which exists in other parent blocks,
there is an execution path skipping the main body of the conditional state-
ment. Thus, the local analysis in the parent block can neglect the existence of
such conditional statements. For if-then-else conditional statement, there is no
such skipping path. Therefore, the local analysis in its parent block could not ne-
glect the existence of if-then-else statement. To handle this situation, if-then-else
conditional statement is replaced by an in child placeholder. in child, which is
designed especially for working as a placeholder for if-then-else statements, does
not generate any SLV but it kills any SLV query visits it. It has this property
because if-then-else has two branches, which both might kill the same variable.

For obtaining control dependencies; whenever any statement is sliced, then
the predicate s0 in its PCB has to be sliced if it was not sliced before. This
routine has to be recursively applied also to the parent predicate until reaching
the most outer PCB.
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Suppose P is a child of the PCB P ′, as soon as P [k] is sliced, then P [0]
should be sliced if it was not sliced and the variables used in P [0] are generated
as SLV queries. In addition, P ′[0] should be sliced if it was not sliced before and
the variables used in it have to be generated as SLV queries.
Example 3: In Example 2, P4[0] is sliced due to slicing P4[1]. Thus, < 3, x > is
generated in P4 and solved internally at P4[3]. In addition, < 2, x > is reproduced
in P0 and solved at P0[1]. Based on that, the slice of the global slicing criterion
< 7, r > consists of: `12, `5, `9, `4, `1, `0 �

4 Partial Data Dependency Graph (PDDG)

Sometimes, the source code might be studied from many different perspectives.
e.g. the control unit of Example 1 might be studied first with respect to ActA and
then to ActB. Thus, the same code should be sliced many times for individual
slicing criteria. In PCB-based slicing, computing many slices suffers from the fact
that the same data dependency should be computed from scratch whenever it
becomes a requirement. This section shows a novel method to store and retrieve
the data dependencies between slices. To do so, the computed data dependencies
are stored in a graph form called Partial Data Dependence Graph (PDDG).

4.1 The Organization of a Partial Data Dependence Graph

In backward slicing, it is required to find the labels of definitions that may
affect the variables used in the sliced label `. PDDG is designed to store these
definitions in order to be retrieved later. To build a PDDG, a special set δ(`) is
added to each label (`). δ(`) is initialized to the empty set. In assuming ` is sliced,
each statement defining any variable used in ` should be computed, sliced and its
label has to be added to δ(`). Consequently, the data dependencies are organized
in PDDG as use-definitions form. In this form, the set of definitions affecting a
particular label are stored in this label, which is a use to those definitions. This
design enables to retrieve once all the definitions of this use when it is sliced
again for a different slicing criteria.

In subsection 3.2, we saw how the definitions of ` are computed by generating
an SLV query for each variable used in ` and propagate it backward. When the
query < i, v > generated from ` reaches a statement `′ defining v, then this is
the best time to capture the data dependency between ` and `′. The problem
is that the origin of < i, v > is not known because i is changed whenever it is
reproduced in a new PCB. Thus, a new field (src) is added to the SLV query
type, which becomes a triple: < loc, src, var >. src is assigned to the global
label, which the SLV query is generated from. Hence, if < i, `, v > is killed at
`′, then `

v−→ `′ which is satisfied by adding (`′, v) to δ(`). Based on that, δ(`) is
defined as:

δ(`) ⊆ P(LABEL × VAR) (4)

The reason of why δ(`) is not a pool of labels only will be explained in Section
4.2.
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4.2 The Hindrance of Interfaces

An interface ι is associated with a set Rm(ι) in order to prevent any variable from
being reproduced more than once. Since the same variable may exist in different
SLV queries, the interface black list may cause missing data dependences.
Example 4: In Fig. 3, if P0[4] and P0[5] are sliced, then SLV queries< 3, P0[4], x >
and < 4, P0[5], x > are added to S(P0). Suppose < 4, P0[5], x > is fetched first,
then it is solved at P0[1]. As well, when < 4, P0[5], x > visits P0[3], it is repro-
duced through ι2 in P4 as < 3, P0[5], x > and Rm(ι2) = {x}. At P4, it is solved at
P4[3], So, δ(P0[5]) = {(P0[1], x), (P4[3], x)}. < 3, P0[4], x > is solved also at P0[1]
but it could not be reproduced through ι2 because x ∈ Rm(ι2). Thus, (P4[3], x)

could not be added to δ(P0[4]). In other words, P0[4]
x−→ P4[3] is not recognized

�
The hindrance of interface is resolved by using a transition point, which

refers to a label (t) existing in the path from `′ and `, where `
v−→ `′. The

transition point helps in expressing a data dependence relation by two fake
data dependencies. Accordingly, `

v−→ `′ is represented by `
v−→ t and t

v−→ `′. To
overcome the hindrance of the interface (`1 ↪→ `2), we consider its ingoing side `2
as a transition point. Hence, if the SLV query < i, `, v > visits `2 and kill(`2) 6= v

then the fake data dependence src
v−→ `2 is created by adding (`2, v) to δ(`). If

< i, `, v > is allowed to be reproduced in M(`1), then it will be reproduced as
< i′, `2, v >, where i′ is the index of `1 in M(`1).
Example 5: Example 4 is resolved as follows: when < 4, P0[5], x > reaches P0[3],
then it is reproduced in P4 as < 3, P0[3], x > and (P0[3], x) is added to δ(P0[5]).
When < 3, P0[4], x > reaches P0[3], (P0[3], x) is added to δ(P0[4]) without being

reproduced at P4. Hence, P0[5]
x−→ P4[3] is expressed as P0[5]

x−→ P0[3] and

P0[3]
x−→ P4[3]. Similarly, P0[4]

x−→ P4[3] is expressed as P0[4]
x−→ P0[3] and

P0[3]
x−→ P4[3] �

Notice that in (4), we defined δ(`) as a pool of pairs rather than a pool of labels.
This organization prevents creating non-existing dependencies. See Example 12.

Example 12 Suppose ι = `i ↪→ `j is in the path of: `1
x−→ `a and `2

y−→ `b. If δ
was a set of labels only, the following data dependencies would be represented:
`1 −→ `j , `2 −→ `j , `j −→ `a and `j −→ `b, which means `1 is data dependent on `b
and this is not correct.

5 SLV Filtering

In PCB-based program representation, interfaces correspond to edges in CFG
program representations. Both of them are constructed to model program flows.
In this section we explain in depth how the interfaces are implemented in an
efficient manner to prevent SLV queries from exploring irrelevant PCBs or paths.
This presentation eliminates unnecessary computations.

The cornerstone in making SLV filtration is in associating the interfaces with
whitelist sets rather than blacklists which we introduced in Section 3.2. The
White List is a smart way to implement the black list in a “negative” way,
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Fig. 4: PCB-Based Representation (Whitelists + Placeholders)

representing what is allowed to go through rather than what is not allowed to go
through. The whitelist set associated with an interface ι = P.` ↪→ P ′.`′, where
P is a child to P ′, is initialized to the variables defined in P and its child PCBs.
The whitelist associated with ι is denoted Wm(ι). As soon as any of the variables
stored inWm(ι) is reproduced through ι, this variable is removed fromWm(ι) and
it becomes no longer allowed to be reproduced again. Based on that, the number
of the variables in the whitelist is in the worst case proportional to the number
of the variables in P and it is decremented after every reproduction. When the
whitelist set becomes empty, then its interface could be deleted to relieve the
analysis from the overhead of its existence. This is contrary to the blacklists
whose sizes in the worst case are proportional to the number of the variables in
the program and they increments after every reproduction. Apparently, changing
from blacklists to whitelists makes a significant improvement. (See Table 2 in
Section 8.2)

Example 5: Fig.4 is an example of preventing SLV queries from exploring ir-
relevant paths. Suppose `15 is sliced and three SLV queries are generated whose
variable components are m,x and t. Notice the t has a definition in P4. In back-
ward dataflow analysis techniques, t propagates in all statements in P12, P8, P7

and P4 although its unique external solution is in P4. Similarly, j is reproduced
in P13, P8, P7 and P4 although it is defined only in P7. Figure 4-B shows four
ingoing interfaces to P0: ι2, ι4, ι6 and ι8. Their whitelist sets are initialized to:
Wm(ι2) = {t}, Rm(ι4) = {j}, Wm(ι6) = {x} and Wm(ι8) = {x}. When t is
generated as an SLV from P0.`15, it visits `14 and `11 and neglects P12, P8 and
P7 because their whitelists do not include t. When it visits `6, t is reproduced
in P4 because it defines t. To sum up, we can say that t is forwarded directly to
P4.
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6 Two-Mode PCB Slicing Algorithm

The PDDG stores and retrieves data dependencies between slices. This mecha-
nism is yielded by designing a slicing method that behaves in two modes. In the
first mode the definitions influencing ` are retrieved from δ(`) and the second
mode generates the variables used in ` as SLV queries to reach these definitions.
The contents of δ(`) assist the analysis to determine in any mode it should run
when ` is sliced.

Alg.5a slices the internal labels of the PCB P with respect to SLV queries
stored in SP . These SLVs are fetched individually (line 4) until no more query
exists (3). The SLV query < i, s, v > visits local statements from i to e, which
is calculated at (7-8). j refers to the index of the current visited statement. j is
calculated from the type of P and the current value of j (10).

When < i, s, v > visits P [j], we check whether P [j] kills v. If it does not (14),
then v is reproduced if P [j] is an ingoing side of an interface (15). Otherwise
(16), P [j] should be sliced (18,19) and added to δ(s) (17). At this point, there are
two modes; if P [j] was already sliced in a previous slice (20) then the definitions
stored in δ(P [j]) should be sliced by the procedure Trck(21). Otherwise, the
second mode generates the variables used in P [j] as SLV queries in SP (23) and
in SP ′ if there is P ′.`′ ↪→ P [j](25) . After every visit, SP is updated according to
the transfer function f j,e(i,s,v)(SP ) shown in Fig.5e. This function has three cases:

< i, s, v > is removed from SP , SP is not updated and finally, < i, s, v > is
removed from SP and the variables used in the current visited statement P [j]
are generated as SLV queries.

Trck(`, var,Nslc) (Fig.5d) traces use-definition chains from `. This is per-
formed by first slicing the definitions stored in δ(`). Then Trck is called recur-
sively to slice the definitions which are stored in each of these labels and so on.
In the pool δ(`), we slice every label stored in δ(`) unless ` is a placeholder. In
this case, we slice only the labels that influence var.

Suppose ` that exists in P is sliced. Since ` is control dependent on P [0], P [0]
should be sliced, which in its turn is control dependent on the predicate of P
parent and so on. In Fig. 5d, this hierarchical structure of control dependencies
goes on until reaching the PCB representing the most outer PCB.

Fig.5d shows Intfc function. This function reproduces var from ` to P ′[k]
if ` is an ingoing side of an interface connecting ` with P ′[k].

Finally, the role of Select function is in fetching individually the SLV queries
from SP . The role of Parent(P) is in getting the parent PCB of P .

7 On-the-fly Interprocedural Slicing

In our previous work [1], we sketched an inter-procedural slicing algorithm for
procedures having a single out formal argument and a single return statement.
This section extends this method to be applied to real procedures, which have
many out formal arguments and multiple return statements or points. Further-
more, the construction of PCBs in inter-procedural programs is formalized math-
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ematically, the syntax of the model language is extended to accommodate inter-
procedural programs, the special transfer function for call sites is improved, and
the super interface concept is introduced.

a: SlicePCB(P, I, Nslc)

1// P: current PCB. I:Interfaces
2// Nslc:sliced labels

3while SP 6= ∅ do
4 < i, s, v >:= Select(SP ) ;
5 j := −1;
6 if (P is C and i 6= final(P)) then
7 e := i+ 1
8 else e = 0;
9 repeat

10 switch j do
11 case j = −1 : j := i; break;
12 case j > 0 : j := j − 1; break;
13 case j = 0 : j := final(P ) ;

14 if (v 6∈ kill(P [j])) then
15 Intrfc(P [j], s, v, I);
16 else
17 δ(s) := {δ(s) ∪ (P [j], v)};
18 if (P [j] 6∈ Nslc) then
19 Nslc := Nslc ∪ {P [j]};
20 if (δ(P [j]) 6= ∅) then
21 Trck(P [j], v,Nslc);
22 else

23 SP := f j,e
(i,s,v)(SP );

24 foreach x ∈ gen(P [j]) do
25 Intfc(P [j], P [j], x, I);

26 Cntrl(P,Nslc, I);

27 break;// Fetch new SLV

28 until j = e;

29return Nslc;

b: Intfc(`, src, var, I)

1 foreach (P ′[k] ↪→ ` ∈ I) do
2 i = P ′[k] ↪→ `;
3 if (var ∈Wm(i)) then
4 Wm(i) := Wm(i)\{var} ;
5 SP ′ := SP ′ ∪ {(k, src, var)};
6return;

c: Trck(`, var,Nslc)

1 foreach (`′, var′) ∈ δ(`) do
2 if s` 6= skip ∧s` 6= in child then
3 Nslc := Nslc ∪ `′ ;
4 Trck(`′, var′, Nslc );
5 Cntrl(M(`), Nslc, I)

6 else
7 if var′ = var then
8 Nslc := Nslc ∪ `′ ;
9 Trck(`′, var′, Nslc );

10return;

d: Cntrl(P,Nslc, I)

1repeat
2 if (P [0] ∈ Nslc ) then return;
3 Nslc := Nslc ∪ P [0];
4 if (δ(P [0]) 6= ∅) then
5 foreach v ∈ gen(P [0]) do
6 Trck(P [0], v,Nslc );

7 else
8 SP := SP ∪ {(0, P [0], v)|v ∈

gen(P [0])}
9 foreach v ∈ gen(P [0]) do

10 Intfc(P [0], P [0], v, I);

11 P := parent(P );

12until P 6= ∅;
13return;

e: Transfer Function

f j,e
(i,s,v)(SP ) =





SP \{(i, s, v)} if (j = e ∧ v 6∈ kill(P [j]))

∨ (v ∈ kill(P [j]) ∧ P [j] ∈ Nslc)

∨ (v ∈ kill(P [j]) ∧ δ(P [j]) 6= ∅)
SP if j 6= e ∧ v 6∈ kill(P [j])

SP \{(i, s, v)}∪{(j−1, P [j], u)|u ∈ gen(P [j])}
if v ∈ kill(P [j]) ∧ P [j] 6∈ Nslc ∧ δ(P [j]) = ∅

Fig. 5: Two-Mode Algorithms
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The algorithm is restricted to non-recursive procedures. This is a common
restriction in safety-critical applications.

To be able to study inter-procedural slicing we must extend the language
with procedure declarations and procedure call. Procedure declarations consist
of a name, zero or more formal arguments and a body. The formal arguments
are declared to be either in arguments, that pass information into the procedure,
or out arguments that in addition pass information from the procedure to the
caller. The global variables are considered out arguments. Procedure calls are,
without loss of generality, restrained to variables. Let F range over procedure
names and let ψP [j] denote the bijective function that maps the actual arguments
at call site P [j] to the formal arguments of the procedure. For a procedure F
and its output formal parameter v, µF (v) refers to the set of formal arguments
that might influence v. The extended syntax is defined as follows.

p ::= d | d p
arg ::= in x | out x

d ::= [proc F arg s]`F

es ::= . . . | [call F x]` | [return]`

We extend the notion of interfaces from being between two labels to being
a relation on sets of labels. For clarity we write ` for the singleton set {`}. Let
calls(F ) be the set of labels of calls to F .

To compute the PCB-graph in the presence of procedures, the algorithm
found in Section 3.1 is extended as shown in Figure 6.

λ`p([call F x]`) = [call F x]`, (∅, ∅)
λ`p([return]`) = [return]`, (∅, {` ↪→ calls(F )})

On the top-level

λ([proc F arg s]`) = (φ[` 7→ {true` : es, L}], ε ∪ {calls(F ) ↪→ `})
where es, (φ, ε) = λ`(s)

λ(d p) = (φ1 ∪ φ2, ε1 ∪ ε2)

where es, (φ1, ε2) = λ(d) and (φ2, ε2) = λ(p)

Fig. 6: Extension of PCB graph computation

The resulting algorithm introduces two inter-procedural interfaces: one going
from the call sites to the entry label of the procedure (Many-to-One Interface)
and one going from a return label to the call sites (One-to-Many Interface). Each
of these two interfaces could be expressed by a set of a normal interfaces (single-
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ton label to singleton label). Thus, Many-to-One and One-to-Many interfaces
are referred to Super Interfaces.

The Super Interface comprises of many thin parts linked through a joint to a
single thick part. Together with the single thick part, each thin part constitutes
a normal interface. Hence, the thick part is shared between all normal interfaces
contained in a super interface. This design allows some inter-procedural informa-
tion to be shared between the different call sites of a procedure, whereas other
information is exclusively linked to individual call sites
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ɩ2 
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Fig. 7: Inter-procedural Example

In Fig. 7, a Many-to-One super interface is: `5, `11 ↪→ `20. It contains two
normal interfaces: `5 ↪→ `20 and `11 ↪→ `20. Further, we have two One-to-Many
interfaces: `23 ↪→ `3, `5 and `26 ↪→ `4, `6. Similarly, each could be expressed by
two normal interfaces.

The shared thick part in a Many-to-One interface is linked with a µF def-
inition for each out formal argument. The thin part holds a ψ−1j definition for

each formal argument. In Fig. 7, the thin part of ι1 associates with ψ−1`5
(r) = t,

ψ−1`5
(k) = h, ψ−1`5

(x) = i, ψ−1`5
(y) = j, ψ−1`5

(j) = u. The thin part of ι2 associates

with ψ−1`11
(r) = a, ψ−1`11

(k) = b, ψ−1`11
(x) = c, ψ−1`11

(y) = m, ψ−1`11
(j) = n. The thick

shared part of ι1 and ι2 contains µ`20(r) and µ`20(k).
The thick shared part in a One-to-Many super interface associates with a

white list that contains initially all the out formal arguments. A thin part con-
necting a return statement to a j call site holds a ψj definition for each out actual
argument at j. Based on that, the shared thick part in `5, `11 ↪→ `20 associates
with Rm = {r, k}. The thin part in ι3 holds ψ`5(t) = r and ψ`5(h) = k.

The SLV queries reproduced through super interfaces are processed in two
stages, one over the thick part and the another in the thin part regardless of the
order, before they reach the opposite sides. We indicate to this fact by saying
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the variable is thrown on a thin or thick part. The throwing of a variable on a
super interface part means that the variable is going to be processed according
to the stage of this part.

There are two types of inter-procedural slicing. The first type is the Up
slicing. Up slicing occurs when the procedure body is a source of SLV queries
due to the existence of slicing criteria in it. Since any of call sites might run the
procedure body, the procedure header is control dependent on all its call sites.
Thus, the direction of SLV queries is from the procedure body to all its call sites.

The second type is the Down slicing. This type refers to the situation where
a particular call site is the source of SLV queries in a procedure body. Therefore,
for the statements which are sliced in the procedure body with respect of these
SLV queries, the procedure header is control dependent on this call site. In
other words, in down slicing, the SLV queries reach a procedure’s header are not
reproduced in all call sites. Instead, the transfer function shown in Sec. 7.1 is
applied.

To maintain the context-sensitivity, we define two stacks, STcall and STvar.
STcall stores the last call site and STvar stores the formal arguments used to
compute µF .

7.1 The Transfer Function

In the down slicing, when the call site whose label is P [j] is visited by an SLV
query < i, s, x >, SP has to be updated according to the following transfer
function:

f j,Fi,e,x(SP ) =
{
SP ψj(x) is undefined

SP \{(i, s, x)}∪{(j−1, P [j], ψ−1
j (u) |u ∈ µF (ψj(x))} µF (ψj(x)),ψj(x) defined

(5)

The first case occurs when x is not an out actual argument at P [j], so SP is
not updated. In the second case, x is an out actual argument at P [j], µF (ψj(x)) is
computed. Thus, < i, s, x > is killed and the actual arguments at P [j] whose cor-
respondent formal arguments belong to µF (ψj(x)) are generated as SLV queries.

7.2 The Algorithm of Down Slicing and the Computation of µF

Suppose P [j] is a call site of F and ιr is an interface from P [j] to a return
statement in F and ιh is an interface from F header to P [j]. The down slicing
algorithm is:

1. When an SLV query < i, s, x > visits a call site P [j] and x is an out argument
at P [j], then:
– if ιh contains an already computed µF (ψP [j](x)), then we go to 9

Note: ιh and ιr are known from the call site side.
– Otherwise:
• x is thrown on the thin part of ιr.
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• The analysis is completely frozen on P [j] side.
2. if the thin part of ιr receives a variable x, then we get ψP [j](x), say v. Then,
v is pushed in STvars and P [j] is pushed in STcalls. Finally, v is thrown on
the thick part of ιr.

3. At the thick part of ιr, v is removed from Wm(ιr) and it is reproduced in
the opposite side of ιr (a return statement in F ).

4. F ’s body is sliced with respect to the SLV queries of its PCBs. When no
more SLV query is alive in F ’s PCBs, we move to the thick part of the
many-to-one interface.

5. In the thick part of the many-to-one super interface:
– We read from the top of STvars the formal argument which F is sliced

with respect to. In other words, we retrieve v. Then we redefine µF (v)
held by the thick part from the dependencies from v at return statements
to F ’s formal parameters located in F ’s header. The edges of PDDG can
be tracked to find these dependencies.

– We retrieve from the top of STcalls the call site, which is P [j]. From P [j]
we find ιh. Then we move to the thin part of ιh.

6. By using the ψ−1P [j] definitions held by the thin part of ιh, we reverse each

formal argument in µF (v) to its actual argument at P [j].
7. STvar and STcalls are popped.
8. P is released from being frozen.
9. The transfer function in Eq. 5 is applied and computed from µF (v) and ψ−1P [j]

definitions held in ιh.
10. The analysis goes on.

8 Results and Discussions

To measure the efficiency of the proposed approach, we have implemented four
algorithms:

– A: implements the proposed methods in this paper; two-modes PCB-based
algorithm, PDDG and filtering SLVs through shrinking sets.

– B: is an implementation of the original PCB-based slicing [1]. It produces
single slices, filters SLVs by whitelists, but it does not implement PDDG.

– C: PDG-based slicing [11]
– D: is an implementation of the original PCB-based slicing [1]. It produces

single slices, filters SLVs by blacklists and it does not implement PDDG.

These algorithms are implemented by using Microsoft Visual C++ 2013. The
experiments have been run on an Intel Core i5 with a 2.66GHz processor, 8 GB
RAM, and 64-bit operating system.

8.1 The Efficiency of Using PDDG and Two-Mode Algorithm

To setup the comparisons, a synthetic program is produced automatically. It is
an intra-procedural program, 125K statements, the predicates constitute 26%
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1 69% 234 180 0,8 12204

2 33% 468 108 0,2 1

3 14% 1 54 54 1

4 15% 1 54 54 1

5 51% 234 144 0,6 1

6 21% 1 72 72 1

7 79% 18 216 12 1

8 58% 1 180 180 1

9 40% 1 108 108 1

10 37% 1 108 108 1

11 45% 1 126 126 1

12 10% 1 18 18 1

13 20% 1 72 72 1

14 39% 1 108 108 1

15 50% 1 144 144 1

sum 965 1692 12204

Table 1

of the program, and it has 50 variables. This program has to be sliced by (A),
(B) and (C) according to 15 distinct and individual slicing criteria.

In Table 1, the first entry shows the times for computing the first slice. Then,
for each subsequent slice, the additional time for computing this slice is shown.
The last entry shows the total times for computing all 15 slices. The second
column gives the size of each slice relative the size of the whole program.

(B) computes every slice individually from scratch. (B) shows that as slices
gets bigger, more computations are performed and intuitively more execution
time is consumed. (C) shows that for PDG-based slicing, the first slice is the
heaviest than others with respect to the execution time. Afterwards, very little
time is consumed to compute each slice.

most the PDDG is constructed while (A) computes the slices: (1,2,5). Af-
terwards, the speedups (B / A) shown in the fifth column vary from 4.8 to 156
for the slices from 5 to 15. Hence, the data dependencies that are accumulated
in (1,2,5) are used in computing the slices from 6 to 15. The main advantage
of the two-modes slicing algorithm is that it does not need a full comprehen-
sive analysis of the program at the beginning. As well, it does not lose previous
computations.

In comparing (A) and (C), we find that both of them depend on a graph
form to retrieve their dependencies. By comparing their results, we find that
for the slices from 6 to 15, the execution times are very close together, which
is because for both algorithms the slicing mainly turns into a backwards search
in a dependence graph. Finally, the last row accumulates the execution times
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obtained by each implementation. The results indicate that the two-modes slic-
ing perform significantly better than our previous PCB-based algorithm when
computing many slices for the same code, and that also PDG-based slicing is
outperformed for a moderate number of slices.

8.2 Whitelist vs Blacklist

The two local implementations (B and D) are used to measure the results of the
change from blacklists to whitelists. To do so, six synthetics source code programs
were produced to be analyzed by (B) and (D). These six programs differ in their
number of variables, which varies from 25 to 800. To ensure fair comparisons,
other factors which could influence execution times are fixed. Thus, the size of
each synthetic program is 50K, the number of predicates in every program is
around 6500 and the slice size is 70% from the total size.

No. Var. 25 50 100 200 400 800

Blacklists - D (s) 0.10 0.35 1.85 10.85 64 424

Whitelists - B (s) 0.014 0.052 0.083 0.146 0.25 0.48

Speedup (D/B) 7.1 6.7 22.2 74.3 256 883

Table 2: Whitelists vs Blacklists

There are two facts can be easily read from Table. 2, the first is that us-
ing whitelists enhances significantly the performance of the analysis. The sec-
ond, which is more important than the first, shows that the superiority of the
whitelists increases as more variables are added to the source code. While more
variables are added to program, thus generating more SLV queries, moving more
SLV queries between the PCBs and performing more operations through black
and white lists. Since the blacklists sizes are proportional to the number of the
programs’ variables and on the other side, the whitelists sizes are proportional
to the PCBs’ variables, the execution times of (D) shows much more higher
sensitivity than (B) to the change of the number of programs’ variables.

9 Related Work

Program slicing was first introduced by Weiser [13] in the context of debugging.
Ottenstein et al. [9, 11] introduced the PDG, and proposed its use in program
slicing. PDG-based slicing has then been the classical program slicing method.
Horwitz et al. [17] extended the PDG to as System Dependence Graph to capture
calling context of procedures.

Hanjal and Forgàcs [6] propose a complete demand-driven slicing algorithm
for inter-procedural well-structured programs. Their method is based on the
propagation of tokens over Control Flow Graph (CFG). Harrold and Ci [16]
propose a demand-driven method that computes only the information which
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is needed in computing a slice. Harrold’s method is based in Augmented CFG
(ACFG). Furthermore, there are more special works for computing interproce-
dural information in a demand-driven way [18,19].

10 Conclusions and Future Work

We have shown how to extend our previous algorithm for demand-driven slic-
ing of well-structured programs [1] into an algorithm that can efficiently com-
pute several slices for the same program. The main mechanism for achiveing
good performance is to store and reuse previously computed data dependencies
across several slices. We also make some clarifications regarding the original al-
gorithm [1], including a formal description how the underlying PCB program
representation is computed from the program code, and a description of how the
“filtering” of Strongly Live Variables at interfaces can be implemented efficiently.

An experimental evaluation indicates that the new two-mode algorithm, with
stored and reused data dependences, performs considerably better than the pre-
vious version when taking several slices of the same code. It also performs sig-
nificantly better than the standard, PDG-based algorithm in the experiment

There are a number of possible future directions. One direction is to directly
apply the slicing algorithm to speed up the verification of safety-critical soft-
ware. For instance, SPARK Ada programs are often filled with assertions to be
checked during the verification process. Formal methods for checking assertions,
like symbolic execution [20], can be very prone to path explosion: slicing with
respect to different slicing criteria derived from the assertions can then help to
keep the complexity under control. A second direction is to generalise the slicing
approach to richer languages including procedures, pointers, and object-oriented
features, and to gradually relax the requirements on well-structuredness. A fi-
nal observation is that the SLV analysis performed by our algorithm provides a
pattern to perform other dataflow analyses, like Reaching Definitions and Very
Busy Expressions [10], efficiently on well-structured code.
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Abstract. Recursive doubling (RD) is a well-known family of parallel
algorithms that have O(Log(N)) parallel time when applied to vectors of
length N . They are used to solve problems like Reduction, Scan (partial
sums), computing some recurrences, solving tridiagonal linear system
etc. Typically, in textbooks, these algorithms are explained and derived
each in their own way, ad-hoc, based on the author’s ingenuity. The
paper suggests a general way to derive each such RD algorithm from a
raw specification by an equation of the form Y = F (Y ), in which no
idea of the RD principle is pre-contained. First, the base process P is
defined, in which the general RD method is applied to the computation
of the fixpoint of the specifier function F . Then, the supercompilation is
applied to the base process P , eliminating all redundancies and producing
a particular efficient RD code.

All necessary definitions in the area of supercompilation are presented.
The supercompiled graph in all our examples has just a single loop that is
built by looping strategy based on neighborhood embedding. The super-
compilation process is carried out manually, all the steps being presented
in the paper. The application of the method to three well-known problem
examples is demonstrated.

Keywords: recursive doubling, parallel algorithms, SIMD, specifica-
tion, fixpoint, supercompilation, neighborhood analysis, neighborhood
embedding, program synthesis.

1 Introduction

Recursive doubling (RD) is a well-known family of parallel algorithms that have
O(Log(N)) parallel time when applied to vectors of length N . They are used
for problems like Reduction, Scan (partial sums), computing some recurrences,
solving tridiagonal linear system etc. This method is also known as cascade, or
pairwise, summation (usually for partial sums) or cyclic reduction (for linear

? Supported in part by the budget funding and the RAS Presidium Program � I.33P
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recurrences and tridiagonal systems) [2, 11]. With our approach they all appear
to be the same, though in [2] they are presented as different methods.

Usually the RD method requires to reveal an associative binary operation,
using which the problem could be reformulated and reduced to calculation of a
convolution (or partial sums) of some vector with this operation. However, this
operation and the respective reformulation of the problem are often difficult to
guess.

We claim that these RD algorithms can be systematically derived from a
problem specifications given in the form of equations like Y = FX(Y ), where X
is an input and Y the result. First, a general but inefficient method of computing
the fixpoint solution is considered. It is the process P of symbolic evaluation of
(FX)n, which leads to solution of the form Y = (FX)n(⊥), where ⊥ means
”unknown”, and n is large enough for the right hand side to compute to a result
vector. To obtain (FX)n for sufficiently large n we apply recursive doubling
scheme which requires Log(n) doubling steps.

However, computing this way immediately is rather expensive. To improve
the efficiency, it is a good idea to apply supercompilation to the process P which
would result in an efficient parallel SIMD-like program solving the original prob-
lem. We show the work of this idea for three classic examples of problems for
which algorithms operating on RD principles are known. We perform the super-
compilation process manually presenting all its steps in the paper. The technique
has not been implemented in the computer yet.

The supercompiled program graph in all our examples has just a single loop
that is built by looping strategy based on the so-called neighborhood embedding.
The uniqueness of this strategy is that it relies on the computing process as a
whole rather than just on the states the process produces.

Though all our result algorithms are textbook ones, the contribution of the
paper is a general method to derive them systematically from very simple and
evident problem specifications. In addition, the paper fills the gap in publications
on the usage of neighborhood analysis in supercompilation, as it was proposed
by V.Turchin [9, 10].

The paper is organized as follows. In Section 2 a general idea of supercompila-
tion is briefly presented. The concepts of driving, computation tree, configuration
graph, generalization, looping, whistle, and neighborhood strategy are introduced,
which will be needed below. In Section 3, the common pattern of RD code deriva-
tion from a tasks specification is presented. In Section 4, this pattern is applied
to 3 distinct problem examples. Section 5 presents evaluation of the topic, iden-
tifying our contribution, and the last section concludes the paper.

2 Basics of the Supercompilation

For the purpose of this paper below we describe supercompilation briefly. For
more systematic presentation the reader may refer to [3, 5, 6, 8–10].

The word supercompilation is made of two parts: super and compilation. The
name reflects the basic idea that a program is compiled by a supervision over
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the process of its generalized computation. Such computation is performed over
not a concrete data but rather over generalized data or states (both input and
intermediate) called configurations and represented with symbolic configuration
variables (c-variables) indicating unknown parts of state information. The dual
nature of a configuration is that, on the one hand, it is a syntactic objects
composed of c-variables, constants and constructors and, on the other hand, it
can be regarded as a set of concrete states. Therefore, the configurations can be
compared for set-theoretic inclusion, which usually corresponds to a syntactic
embedding by means of a substitution.

A generalized computation is called driving and involves the following three
types of actions:

1. If normal computational process assumes a choice based on current values
of some c-variables, the driving process splits into two branches with the
indication of the predicate, generating the splitting. Accordingly, for each
of the branches the set of possible values for these variables is narrowed. A
variable narrowed to a constant can be replaced with the constant. A variable
narrowed to a structure can be split into several variables corresponding to
structure fields.

2. If the process executes an operation forming a new data item from old ones,
then an updated configuration with a new c-variable is created, and the arc
leading to it from the old one is labeled with the substitution for this variable
of an expression specifying the method of calculating its value from existing
c-variables.

3. The process can perform a state reconstruction not linked with the emer-
gence of a new data (for example, moving a structure field). Then a new
node appears in the tree with a new configuration comprised of only old
c-variables. None labels are placed on the arc to it. Such configuration (the
source one) is called transit, and further it can be removed.

These three types of actions being applied iteratively to unfinished configu-
rations produce a tree of generalized states whose branches represent generalized
computation paths. These branches evolve independently of each other. Some
of them may be (potentially) infinite. Now we are to fold the infinite tree into
finite graph, representing the same set of paths.

To achieve this, each time a new configuration appears in the process of
driving a looping strategy is applied which compares the new configuraton with
all old ones (or their parts) seeking for their admissible generalizations into which
the new one could be embedded. In case of successful embedding without extra
generalization the branch evolution stops and an arc from the new configuration
to the old one labeled with unifying substitution is drawn.

If a generalization is needed, the strategy decides whether to generalize and
loop now or to continue driving. In the former case (generalization) the arc
is drawn from the old configuration to the generalized one with the needed
substitutions and all the subtree growing from it is rebuilt anew. If you are lucky,
another new configuration would embed into the generalized old one, otherwise
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we repeat the search. (The case of embedding into a part of an old configuration
is not considered, as it is useless here. Just mention that a pruning is done and
the sub-graph is built that forms a subroutine).

Choosing a strategy implies a compromise between the desire to have residual
program smaller, and the desire to perform more work statically. For example, if
you allow to make any possible generalization, the process will complete quickly
with a small residual graph, but most of actions will remain in it. This is a
conservative strategy. Yet if you hold from looping, more actions will be su-
percompiled out, but the process of supercompilation can go to infinity. Such
strategy is called aggressive.

Often some rather aggressive strategy is used, and above it a so-called whistle
is introduced, which occasionally generates a signal forcing a loop.

When and if the process is completed, the final graph is converted to a
residual program. Wherein:

1. All elements except variables are erased in graph node configurations. The
variables represent local data available at the current program point.

2. Substitution on the arc converts to assignment statements.
3. Branching converts to conditional statement.

The described process is usually carried out automatically by the supercom-
piler, as a program that directs the computation process and an initial configura-
tion are given. In our case, the ”program” is the general scheme of the recursive
doubling method for computing a fixed point, the ”initial configuration” is the
task specification in the form of equation, and the process of ”supercompilation”
is carried out manually, imitating the work of the supercompiler.

For generalizations and looping the neighborhood strategy will be used. If
a few driving steps were made from a configuration, then a neighborhood of
this configuration is a set of configurations that includes this one together with
all those from which the same steps would be made. The neighborhood (more
precisely, its approximation from below) may be obtained by replacing unused
parts of initial configuration with metavariables. Then, reducing metavariables to
normal configuration variables, we obtain a generalization of the configuration,
using which we keep all action performed earlier. A loop is made only when a
new configuration (or rather its corresponding generalization) is embedded into
a neighborhood of one of the previous configurations. This strategy does not
guarantee the termination, but in our cases it is sufficient.

In essence, there are two major components in the supercompilation. The
first is a formal inference rule, equivalent to the mathematical induction, which is
provided by the mechanism of looping on condition of configurations embedding.
The other component is a strategy, in our case the neighborhood one, which
is nothing more than a heuristic for detecting inductive hypotheses. Together,
these two components provide a fully algorithmic ”intelligence” for algorithm
transformations.

The idea of neighborhood strategy for supercompilation was proposed by
V. Turchin [9,10]. The formalization of the concept of neighborhood and neigh-
borhood analysis in the broader context was carried out by S. Abramov [1].
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3 General Scheme of Algorithm Derivation

As an initial ”language specification” we shall use the language of recursive
equations. If the input is denoted by X and the output (including, possibly,
interim results) by Y the specification takes the form

Y = R(X,Y ) (1)

where R is an expression with variables X and Y . For a given X, equation (1)
can be rewritten as:

Y = RX(Y ) (2)

Let us assume that the domains of X and Y have complete partial order
structure and that all functions used in R are monotonic. Then the solution of
equations of the form (2) can be written as the limit

Y = lim
n→∞

(RX)n(⊥) (3)

where the degree is the n-fold superposition of the function. In practice, one
may take the value of (RX)n for some finite n, starting from which the sequence
is constant. It will be the case if, e.g., expression (RX)n does not contain the
argument variable Y .

For our purposes it will be enough to take the domain of vectors of length N
with elements of a type T extended with value ⊥, such that a � ⊥ for all a ∈ T .
The element ⊥ means undefined and relation � means more (or equally) exact.
All operations φ over type T are extended by the rule φ(. . . ,⊥, . . . ) = ⊥ and
on the vectors are defined element-wise. The vector ⊥ = [⊥, . . . ,⊥]. In addition,
we’ll need the shift operator for vectors. Consider vector X = [x1, x2, . . . , xN ].
Then for k ≥ 0 by definition we have

shift( k,X) = [0, . . . , 0, x1, . . . , xN−k], (k zeros from left)

shift(−k,X) = [xk+1, . . . , xN , 0, . . . , 0], (k zeros from right)

As an example, consider a simple problem: calculation of the vector B of the
partial sums of vector A. It can be defined by the following equation:

B = RA(B) = shift(1, B) +A (4)

Indeed, it is easy to see that

(RA)k(⊥) = [a1, a1 + a2, . . . , a1 + a2 + · · ·+ ak,⊥, . . . ,⊥] (5)

and therefore for k ≥ N the formula (5) yields the desired result.
It is clear that to calculate (RA)N (⊥) immediately by N -fold applicaton of

RA is very expensive. Therefore, we first calculate the N -th degree of RA using
the doubling method:

F1 = RA

F2 = F1 ◦ F1

F4 = F2 ◦ F2

. . .

(6)
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The process (6) may stop if an expression F2n does not contain symbol Y (or
it becomes clear that the limit is achieved). Then the desired result is F2n(⊥).
This explains the type name of produced algorithms: recursive doubling.

If we perform the superposition operation ◦ formally, then no effect will take
place, because the calculation of F2n(⊥) will still have to make 2n calls to initial
function RA. However, making formula manipulation each step is also expensive.
Thus, it is a good idea to supercompile the process (6) with unknown input A,
such that only calculations dependent of A remain for dynamic execution.

As the supercompilation would only make sense for a particular problem RA,
we give here only general comments on the scheme, and the full description of
the supercompilation process will be set forth by specific examples in Section 4.

The initial configuration is the equation of the form Y = RX(Y ), in which
X is a configuration variable indicating the input and Y is just a formal symbol.
Performing the step is to move to the configuration Y = RX(RX(Y )), in which
various simplifications are produced. Herein are used the usual properties of
arithmetic operations and the following properties of the shift operator:

shift(k,A�B) = shift(k,A)� shift(k,B) (7)

shift(k, shift(k,A)) = shift(k + k,A) (8)

shift(k, (shift(k,A)) = shift(k,1) ·A,where 1 = [1, 1, . . . , 1] (9)

shift(k,X) = 0, if k ≥ N (10)

where � is any operation on elements (such that 0� 0 = 0).
To provide the termination property of residual program the supercompiler

must recognize formula that does not depend on Y . To this end, based on the
property (10), we will act according to the following rule: when the formula has
a sub-expression of the form shift(k,X), we introduce the splitting predicate
k ≥ N and on the positive branch replace this sub-expression with 0. This
will lead to possible exclusion of the argument Y from configurations on some
branches, which then can become terminal.

The supercompilation will be effective if we find a common form for the steps.
For doubling, it will be possible if we succeed to represent the configuration after
the step in the same form as before the step, in which case the loop is possible. In
case of success, the final residual graph is converted to the code in a programming
language. The code will hold element-wise vector operations, which are easily
parallelizable.

4 Examples

4.1 Linear Recurrence

This is a generalization of example (4). Given are two vectors A and B of length
N . We are to solve the following equation

Y = A ∗ shift(1, Y ) +B (11)
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In a more familiar mathematical language, this is equivalent to the calculation
of the sequence {yi} defined by the following recurrence:

y0 = 0

yi = ai ∗ yi−1 + bi , i > 0
(12)

Let us supercompile the computation process for solving equation (11) by
doubling method. The initial configuration C0 is the original equation:

C0: Y = A ∗ shift(1, Y ) +B

The doubling step is to substitute for the variable Y in the right-hand side
with the right hand side itself and simplify:

C1:
Y = A ∗ shift(1, A ∗ shift(1, Y ) +B) +B

= [A ∗ shift(1, A)] ∗ shift(1 + 1, Y ) + [A ∗ shift(1, B) +B]

It is easy to notice the similarity of this configuration with the original one.
But how can the machine ”notice” this? Formally, it is necessary to represent
both configurations as special cases (by substitutions) of a common configura-
tion. But which generalizations should be considered valid? An answer may be
given by neighborhood analysis. We carry out a step from configuration C0 to
configuration C1, watching for what information from C0 representation we use.
To this end, we cover the description of the configuration C0 with a translucent
strip, and whenever a symbol is explicitly used in the process, we make it out of
the strip. On step completion only the symbols A, B and 1 remain intact:

U0: Y = A ∗ shift( 1 , Y ) + B

This means that no matter what could be in their place, the step would be
carried out in the same way. Note that these parts can go without changes into
new configurations after the step:

U1: Y = [ A ∗ shift( 1 , A )] ∗ shift( 1 + 1 , Y ) + [ A ∗ shift( 1 , B ) + B ]

The result of the driving step with neighborhood is shown in Fig. 1 (left).
There appeared a split due to property (10) and new configurations on the arc
ends. Intact parts of the original configuration are shaded.

Now we can replace all the unused parts with metavariables. Let it be A, B
and K. Considering all sorts of substitutions for them, we get a variety of con-
figurations for which the driving step is identical to step from this configuration.
In terms of metavariables it is a step from metaconfiguration

M0: Y = A ∗ shift(K, Y ) + B

to metaconfiguration

M1: Y = [A ∗ shift(K,A)] ∗ shift(K +K, Y ) + [A ∗ shift(K,B) + B]
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Thus, as a result of the neighborhood analysis a generalized configuration M0
has been built, which will be considered as a maximum permissible generalization
of the initial configuration C0, to which the looping is feasible.

Recall that the rule (10) for M0 yields the predicate k ≥ N with the branch to
the final metaconfiguration Y = B. Metaconfiguration M1 on the other branch
should be driven further as it contains Y . But first we must check whether it
falls into the processed one (M0). We see that it does, and therefore we may not
proceed doing the next step but make a loop into the generalized old configu-
ration M0. To this end, in the neighborhood M0 we replace metavariables with
usual configuration variables such that both old and new configurations C0 and
C1 can be obtained from it by substitutions. Those substitutions become labels
on the arcs into the new generalized configuration. The result is shown in the
right part of Fig. 1.

 
 

Y = A*shift (1,Y) + B

1≥N

Y=B

T

F

Y=A*shift(1,A)*shift(1+1,Y)+

+A*(shift(1,A)+B)

Y = A*shift (k,Y) + B

k≥N

Y=B

T

F

Y=A*shift(k,A)*shift(k+k,Y)+

+A*shift(k,A)+B

Y = A*shift (1,Y) + B

k←1

k←k+k

A← A*shift(k,A)

B← A*shift(k,B)+B

Fig. 1. Construction of the graph configurations in the Linear Recurrence. To the
left is the first doubling step with its neighborhood. Untouched parts of the initial
configuration are shaded. In their place, new variables are introduced (if they did not
exist yet). To the right is the final graph after generalization and looping.

Now we convert the resulting graph into the program in a programming lan-
guage: erase configurations (except the final) and replace the substitutions with
assignment operators (changing their order and introducing interim variables if
necessary). The result is shown in Fig. 2. It is a simple cyclic program built
of parallel vector operations. It is easy to see that the loop performs Log (N)
iterations, each taking an O(1) parallel time.

Interestingly, if the size of the vector N were a given constant, say 1000, the
first driving step would lead to the lack of a lateral branch, as predicate 1 ≥ 1000
yields known false. So, the value of 1 would have been used, and therefore there
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k:=1;

while k<N do

B:=A*shift(k,B)+B;

A:=A*shift(k,A);

k:=k+k;

end;

Y:=B;

Fig. 2. The generated code for the Linear Recurrence

would be no embedding. The neighborhood strategy in this case would lead to
a complete loop unfolding (here 10 rounds).

4.2 Binary Addition

Consider the task of adding two binary integers A and B. The desired result is a
scheme with fast carry, which works for the Log(n) clock cycles, where n is the
bit size of summands.

We begin with the following system of recurrent equations defining the vec-
tors carry C and sum S:

C = A ∧B ∨ (A ∨B) ∧ shift(1, C)

S = A⊕B ⊕ shift(1, C)
(13)

where ∧, ∨, ⊕ are bitwise conjunction, disjunction and addition modulo 2 re-
spectively (∧ has the highest priority).

Let us solve the equation for C by doubling. The initial configuration is

C0: C = A ∧B ∨ (A ∨B) ∧ shift(1, C)

We do not show the step result (configuration C1) as it is bulky and not
interesting. For configuration C0 we get the following neighborhood:

U0: C = A ∧B ∨ (A ∨B) ∧ shift( 1 , C)

Replace unused parts (selected by gray background) with metavariables, let
it be G, P and K. Metaconfiguration

M0: C = G ∨ P ∧ shift(K, C)

goes by the driving step into metaconfiguration

M1:
C = G ∨ P ∧ shift(K,G ∨ P ∧ shift(K, C)) =

= G ∨ P ∧ shift(K,G) ∨ P ∧ shift(K,P) ∧ shift(K +K, C)

One can see that metaconfiguration M1 embeds into the initial one M0.
Making the needed actions for generalization and looping (structurally they are
similar to the previous example, just operations are different), we get the graph
shown in Fig. 3.
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k:=1; 

G:= A ∧ B; 

P:= A ∨ B; 

while k<N do 

      G:=G ∨ P ∧ shift(k,G); 

      P:=P ∧ shift(k,P); 

      k:=k+k; 

end; 

C:=G; 

S:= A ⊕ B ⊕ shift(1,C); 

 

С = G ∨ P ∧ shift (k,C)

k≥N

C=G

T

F

С = G ∨ P ∧ shift (k,C) ∨ 
P ∧ shift (k,P) ∧ shift (k+k,C)

С = A∧B ∨ (A∨B)∧shift (1,C)

k←1

G←A∧B

P ← A∨B

k←k+k

G← G ∨ P ∧ shift (k,C)

P← P ∧ shift (k,P)

Fig. 3. To the left is the finished configuration graph for Binary Addition problem. To
the right is the corresponding program ”with fast carry”.

4.3 Solving tridiagonal linear equations

We write the tridiagonal system of equations as

X = A · shift(1, X) +B · shift(−1, X) + C (14)

where A, B, C are input vectors and X is the vector of unknowns.
A distinctive feature of this problem is that the doubling step transforms not

only the right hand side, but the entire equation. The initial configuration is:

C0: X = A · shift(1, X) +B · shift(−1, X) + C

We perform the step and simplify the result with the use of the property (9):

C1:

X = A · shift(1, A · shift(1, X) +B · shift(−1, X) + C)+

B · shift(−1, A · shift(1, X) +B · shift(−1, X) + C) + C

=A · shift(1, A) · shift(1 + 1, X)+

B · shift(−1, B) · shift(−(1 + 1), X)+

A · shift(1, C) +B · shift(−1, C) + C+

A · shift(1, B) ·X +B · shift(−1, A) ·X
By grouping linear on X terms to the left and dividing both parts by the

coefficient of X, we reduce the configuration C1 to the following form:

C1′:

X =(A · shift(1, A))/D · shift(1 + 1, X)+

(B · shift(−1, B))/D · shift(−(1 + 1), X)+

(A · shift(1, C) +B · shift(−1, C) + C)/D,
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where D = 1 − A · shift(1, B) − B · shift(−1, A). Consider the neighborhood U0
of initial configuration, where all intact parts are shaded:

U0: X = A · shift( 1 , X) + B · shift(− 1 , X) + C

Note that the two occurrences of the number 1 were touched only by comparing
them with each other (through the use of property (9)), so, in the neighborhood
expression M0, they should be represented with the same metavariable K.

M0: X = A · shift(K, X) + B · shift(−K, X) + C

After the step, at both corresponding locations in metaconfiguration M1 occurs
the same sub-expression (K +K), which allows to embed.

M1:

X =(A · shift(K,A))/D · shift(+K, X)+

(B · shift(−K,B))/D · shift(−(K +K), X)+

(A · shift(K,C) + B · shift(−K,C) + C)/D,

where D = 1−A · shift(K,B)−B · shift(−K, A) Thus, the metaconfiguration M1
completely embeds into the neighborhood metaconfiguration M0, which results
in a final graph on Fig. 4. After erasing all the excess, we obtain the residual
program shown in Fig. 5.

 

X = A∙shift(k,X) + B∙shift(-k,X) + C

k≥N

X=C

T

F

X = (A ∙ shift(k,A))/D ∙ shift(k+k,X) +

(B ∙shift(-k,B))/D ∙ shift(-(k+k),X) + 

(A ∙ shift(k,C) + B ∙ shift(-k,C) + C)/D,

where D = 1 - A ∙ shift(k,B) + B ∙ shift(-k,A)

X = A∙shift(1,X) + B∙shift(-1,X) + C

k←1

k←k+k

A← (A ∙ shift(k,A))/D

B← (B ∙ shift(-k,B))/D

C← (A ∙ shift(k,C) + 

B ∙ shift(-k,C) + C)/D

where D = 1 - A ∙ shift(k,B) -

B ∙ shift(-k,A)

Fig. 4. Configuration graph for solving tridiagonal system of equations
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k:=1;

while k<N do

D:=1A*shift(k,B)B*shift(k,A);

C:=(A*shift(k,C)+B*shift(k,B)+C)/D;

A:=(A*shift(k,A))/D;

B:=(B*shift(k,B))/D;

k:=k+k;

end;

X:=C;

Fig. 5. The generated code for solving tridiagonal system of equations

5 Related Work

As was mentioned in the Introduction, all algorithms derived here are well known
and described in textbooks [2, 11]. And though the rationale for the algorithm
for the Linear Recurrence problem in [2] is meaningfully the same as ours, it is
described there in the style of common reasoning, and the Fortran code (which
is exactly the same as in Fig. 2) is given just as a hand-written implementation.
On the contrary, in our paper we demonstrate the possibility of mechanical
derivation using a supercompilation mechanism. To the best of our knowledge,
no existing compiler is able to generate parallel code based on recursive doubling,
unless an associative operation for functions Scan or Reduce is given explicitly.

An interesting and rather complicated case of algorithm based on doubling
is considered by B. Steinberg [7]. He explores the possibility of calculating by
doubling method the recursion of the form:

Yi = if Pi(Yi−1) then Ai else Fi(Yi−1),

where A is a given numerical vector, and P , F are functions, that depend on
index i as well as on the main argument. The author presents conditions on
functions P , F and vector A, in which it is possible, and the respective theo-
rem is proved. All is presented in the style of traditional mathematics, relying
on the author’s ingenuity. We hope that, by means of a supercompiler with a
well-developed system of formula transformations, a similar result including the
necessary restrictions on input functions can be obtained automatically.

6 Conclusion

The algorithms derived here are well known and described in the textbooks
[2,11], but their explanation and/or derivation is typically based on conjectures,
intuition and special considerations. Here we suggest a general method to sys-
tematically derive them from simple definitions presented in the form of recursive
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equations like Y = F (Y ). Then, a general recursive doubling method for calcu-
lating the fixed point is applied. This process is subject to execution under the
control of a supercompiler. As a result, an efficient parallel code is generated in a
language with parallel vector operations. Its execution takes O(log(N)) parallel
time, where N is the size of the problem. We do not give a detailed analysis of
their performance, as there are a lot publications about that. The purpose of the
paper is to present the very method of obtaining algorithms. The method was
announced by the author in 1988 [4]. Now, this paper reveals the details.

In the paper the supercompilation process is carried out manually, but fol-
lowing certain rules. The paper shows the techniques needed in a compiler for
automated parallelization of a kind of loops. Of particular importance is the
tool for formula transformations, which should allow to convert a formula to a
certain pattern that is itself created in the same process.
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Abstract. Program veri�cation is a well known potential application of
supercompilation. There are, however, few examples of using supercom-
pilation for practical veri�cation problems. We consider the correctness
proof of the supercompiler itself as an interesting and practical task, on
which to test the potential of supercompilation in this area. We show
that even a simple supercompiler � treating a small �rst-order subset
of Lisp, and working in cooperation with a traditional proof assistant
(J-Bob) � can provide a lot of help for checking its own correctness.

1 Introduction

Supercompilation is a program transformation technique � a particularly strong
form of partial evaluation [4,8] � originally proposed by Turchin [24], with a long
history [12] and many potential applications: program optimization, software
testing, program analysis, formal veri�cation. While many of these applications
were already described by Turchin in his early works, most of the research on
supercompilation has concentrated for many years on program optimization. In
recent years researchers show renewed interest in other applications, including
analysis and veri�cation of programs and other systems [11, 13, 18, 19]. A good
way to increase the adoption of supercompilation for veri�cation is to demon-
strate it is applicable and helpful for a wider range of practical problems. By
analogy with self-application of supercompilers (and partial evaluators in gen-
eral) � which has been a hot research topic for many years [4, 20] � we consider
veri�cation of the supercompiler itself to be an interesting task. A challenge in
the context of veri�cation is how to trust the results of a supercompiler, espe-
cially if it is being used for its own veri�cation. A good solution to this problem
has recently been proposed by Klyuchnikov et al. [14]: a supercompiler produc-
ing not only a transformed program, but also a certi�cate proving the result is
semantically equivalent to the input.

We take this idea a step further by showing that a supercompiler � which
is both self-applicable and certifying � can be used successfully as a proof au-
tomation tool during the creation of its own correctness proof. Note that we do
not speak of fully automatic self-veri�cation: the supercompiler automatically
generates only parts of its correctness proof. The overall proof is created manu-
ally in a traditional proof assistant. We argue that this organization is actually
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an advantage: while typically supercompilers are used as automatic black-boxes,
and if they fail to produce the desired result, their user is left with nothing, in
our approach the supercompiler can be called many times during an interactive
proof session, each time incrementally helping to get closer to the �nal goal. We
outline as particular achievements of the proposed approach the following:

� a way to construct a supercompiler, which is both self-applicable and certi-
fying (Sect. 3);

� an alternative two-phase approach to the construction of a certifying su-
percompiler: the supercompiler returns only a certi�cate, and the resulting
program can be reconstructed from this certi�cate as a second step (Sect.
3.1);

� successful application of the described supercompiler as a generic proof au-
tomation tool in the context of a traditional proof assistant (Sect. 3.1);

� successful application of the supercompiler to �ll in parts of its own correct-
ness proofs (Sect. 4.2).

In Sect. 3 we discuss the overall architecture of our supercompiler and the adap-
tations made � compared to a classical supercompiler organization � in order
to �t better as a proof automation tool inside the J-Bob proof assistant. One
important omission is the lack of folding (that is, the supercompiler cannot pro-
duce new function de�nitions). It turns out folding is of no critical importance
for our particular application domain, while its lack simpli�es a lot both the
supercompiler and its correctness proof. Section 4 discusses the more interesting
details of the implementation itself, as well as some of the tricks used to simplify
further the correctness proof. In Sect. 5 we analyze the performance of the pro-
posed system in two aspects. First, we use the ratio of high-level proof steps (as
entered manually by the user) versus low-level proof steps (obtained after the
application of supercompilation) as a measure of the level of proof automation
the system provides. Second, we analyze the processing time requirements of the
overall system (supercompiler + underlying proof assistant), and how they can
be improved.

We assume readers are familiar with supercompilation [13, 22, 24], but not
necessarily with J-Bob. As J-Bob's principles of operation are important for
understanding the rest of the article, we brie�y review them in the following
section.

2 J-Bob Crash Course

For this supercompiler veri�cation experiment we use a proof assistant called J-
Bob. It has been recently published [2] to accompany the new book �The Little
Prover� [3] � a gentle introduction to program veri�cation and proof assistants
in general. J-Bob can be used to check proofs of properties of programs written
in a �rst-order purely functional subset of Lisp. While this Lisp dialect contains
only a few built-in data types and a handful of primitives, it can still be used to
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write interesting and complicated programs. For example, J-Bob itself is writ-
ten in the same Lisp subset it can reason about. Programs are a sequence of
function de�nitions (ordered by the de�nition-use relation), with their bodies
being expressions of 4 syntactic categories (Fig. 1): variables, constants, condi-
tional expressions, and function calls (to both built-in primitives and de�ned
functions). Only direct recursion is allowed and recursive function de�nitions
must be accompanied by a proof of termination. The built-in data types consist
only of atoms (natural numbers and symbols) and cons pairs. The built-in op-
erations are: equal, atom, car, cdr, cons, natp, size, +, <. As a small example
the function for concatenating 2 lists can be written as in Fig. 2.

Exp 3 e ::= x | 'c | (if eq ea ee) | (f e1 . . . en)
Def 3 def ::= (defun f (x1 . . . xn) ebody)

Prg 3 p ::= def 1 . . . def n

Fig. 1. Lisp syntax

(defun append ( xs ys )
( i f (atom xs ) ys

( cons ( car xs ) ( append ( cdr xs ) ys ) ) ) )

Fig. 2. List append in Lisp

Unlike many other proof assistants J-Bob does not make a distinction be-
tween logical statements and Boolean expressions: logical statements are rep-
resented as Boolean expressions1. This feature is particularly useful for our
purposes, as supercompilation deals easily with program expressions (includ-
ing Boolean ones), but not with logical statements. The if-expression serves as
the only built-in Boolean operation, but other operations are easily expressible,
for example:

a ∧ b ≡ (if a b 'nil)

a ∨ b ≡ (if a 't b)

a→ b ≡ (if a b 't)

1 As Lisp is dynamically typed, there is no static distinction between Boolean-valued
and other expressions. By �Boolean expression� we mean an expression, which always
results in a Boolean value in all dynamic contexts
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As J-Bob's logical statements are just Boolean expressions, its proofs are
actually program transformations whose goal is to transform the expression rep-
resenting a given theorem statement into the constantly true expression ('t).
Namely, a J-Bob proof is a sequence of steps, each step being one of three kinds:

� rewriting � possibly conditional � based on some equality known to be true
(either an axiom or a previously proved theorem);

� unfolding or folding of a de�ned function;
� evaluation of a built-in function called with constant arguments.

Each step is a pair consisting of:

� a path de�ning a subexpression;
� a transformation to perform on this subexpression.

Paths are just sequences of navigation steps inside compound expressions: the
single-letter atoms Q(uestion), A(nswer), and E(lse) are used to select one of the
3 subexpressions of an if-expression and natural numbers (starting from 1) index
the arguments of a function call.

As an example we can consider the proof that the list append function is
associative:

( (dethm append−assoc ( xs ys zs )
( equal ( append ( append xs ys ) zs ) ( append xs ( append ys zs ) ) ) )
( l i s t− i nduc t i on xs )
( (A 1 1) ( append xs ys ) )
( (A 1 1) ( if−nest−A (atom xs ) ys ( cons ( car xs ) ( append ( cdr xs ) ys )

) ) )
( (A 2) ( append xs ( append ys zs ) ) )
( (A 2) ( if−nest−A (atom xs ) ( append ys zs ) ( cons ( car xs ) ( append (

cdr xs ) ( append ys zs ) ) ) ) )
( (A) ( equal−same ( append ys zs ) ) )
. . .
( ( ) ( if−same (atom xs ) ' t ) )

)

The proof starts with an indication that we are to proceed by induction on
argument xs. At that point (if we have not added other steps to the proof yet),
J-Bob presents us with a proof obligation based on the body of the theorem and
the selected induction scheme:

( i f (atom xs )
( equal ( append ( append xs ys ) zs ) ( append xs ( append ys zs ) ) )
( i f ( equal ( append ( append ( cdr xs ) ys ) zs ) ( append ( cdr xs ) ( append

ys zs ) ) )
( equal ( append ( append xs ys ) zs ) ( append xs ( append ys zs ) ) ) ' t ) )

In the base case when xs is an atom, we must prove the statement directly,
otherwise we can use the induction hypothesis (equal (append (append (cdr xs)ys)zs)

(append (cdr xs)(append ys zs))) inside the proof. The �rst step of the actual proof �
((A 1 1) (append xs ys)) � unfolds the corresponding occurrence of append and the
current expression becomes:

( i f (atom xs )
( equal ( append ( i f (atom xs ) ys ( cons ( car xs ) ( append ( cdr xs ) ys ) ) )

zs ) ( append xs ( append ys zs ) ) )
( i f ( equal ( append ( append ( cdr xs ) ys ) zs ) ( append ( cdr xs ) ( append

ys zs ) ) )
( equal ( append ( append xs ys ) zs ) ( append xs ( append ys zs ) ) ) ' t ) )
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We notice the nested occurrence of a check for (atom xs), which is redundant.
We eliminate it with the next proof step � ((A 1 1) (if−nest−A (atom xs)ys (cons (car

xs)(append (cdr xs)ys)))) � where if-nest-A is an axiom from the J-Bob standard
library. The resulting expression is:

( i f (atom xs )
( equal ( append ys zs ) ( append xs ( append ys zs ) ) )
( i f ( equal ( append ( append ( cdr xs ) ys ) zs ) ( append ( cdr xs ) ( append

ys zs ) ) )
( equal ( append ( append xs ys ) zs ) ( append xs ( append ys zs ) ) ) ' t ) )

With 2 analogous proof steps we can also simplify the second call (append xs ...)

and we get:

( i f (atom xs ) ( equal ( append ys zs ) ( append ys zs ) )
( i f ( equal ( append ( append ( cdr xs ) ys ) zs ) ( append ( cdr xs ) ( append

ys zs ) ) )
( equal ( append ( append xs ys ) zs ) ( append xs ( append ys zs ) ) ) ' t ) )

There is a call to equal with identical arguments, which we can simplify with
another library axiom in the next step � ((A) (equal−same (append ys zs))):

( i f (atom xs ) ' t
( i f ( equal ( append ( append ( cdr xs ) ys ) zs ) ( append ( cdr xs ) ( append

ys zs ) ) )
( equal ( append ( append xs ys ) zs ) ( append xs ( append ys zs ) ) ) ' t ) )

At this point the answer-arm of the outermost if-expression (which corresponds
to the base case of the induction) has been reduced to 't. After 12 more proof
steps (not shown for brevity), we also reduce the else-arm to 't:

( i f (atom xs ) ' t ' t )

The last step of the proof � (() (if−same (atom xs)'t)) � reduces this last expression
to 't, which completes the proof. We have shown � by using an induction scheme
plus a sequence of elementary program transformations � that the statement of
the theorem will always evaluate to 't, no matter what arguments we pass.

3 A Supercompiler for J-Bob

3.1 Overview

The example from the previous section shows that many steps in a typical J-
Bob proof are �obvious� reductions of subexpressions. Such proof steps are very
tedious to write by hand, especially as J-Bob � being a very minimalistic prover
� insists on fully specifying all arguments of the axiom or theorem each step uses.
On the other hand many of these steps coincide directly with the steps a typical
supercompiler would take when presented with such an expression as input. So
our �rst goal is to make a supercompiler automate � as much as possible � the
tedious parts of a J-Bob proof. To support this goal, our supercompiler must
return not only the resulting expression, but also the sequence of transformation
steps used to convert the input to the output expression, similar to the certifying
supercompiler of Klyuchnikov et al. [14]:

scp : Prg × Exp → Exp × Steps
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If the input expression is the current goal of an un�nished J-Bob proof, we can
insert the returned steps inside the proof and change the goal to the �nal expres-
sion produced by the supercompiler � so such an interface to the supercompiler
ensures that it can be used directly for J-Bob proof automation. The sequence
of transformation steps is actually su�cient to reconstruct the �nal expression
from the original one. Supposing a function for performing transformation steps
(which already exists in J-Bob)

rewrite : Prg × Exp × Steps → Exp

it should hold that:

scp(defs, e1) = (e2, steps)→ rewrite(defs, e1, steps) = e2.

This observation permits us to simplify the type of the supercompiler by return-
ing only the necessary transformation steps:

scp′ : Prg × Exp → Steps

This approach makes easier the construction of the supercompiler, but also �
and more importantly � its correctness proof.

Our second goal is to see if, and to what extent, the proof automation pro-
vided by our supercompiler can help in its own correctness proof. Several obser-
vations follow from this goal:

� we must formalize the correctness proof inside J-Bob;
� the supercompiler itself must be written in the Lisp dialect that J-Bob can
handle;

� the precise formal statement of what it means for the supercompiler to be
correct must be compatible with the semantics of J-Bob.

While the �rst 2 points are trivial, the last one requires some elaboration. J-
Bob tacitly assumes that Lisp programs are evaluated in accordance with some
semantics, but this semantics is not fully and explicitly described. There are Lisp
expressions, about which J-Bob cannot reason. For example, there is no rule in
the standard library, which could tell the value of ( if (cons x y) a b), (unless both
x and y are constant values), although it is expected that this value is always
de�ned. We sidestep this lack of explicit program semantics by changing what
we mean by supercompiler correctness: we simply require that the supercompiler
return a valid sequence of transformation steps, which will not get stuck if applied
to the original expression. To formalize this de�nition in a simple and explicit
way, we need a modi�ed version of the rewriting function, which also returns an
explicit �ag if all the steps have been performed successfully:

rewrite ′ : Prg × Exp × Steps → Bool × Exp

We can then de�ne:

correct(scp′) ≡ ∀defs∀e(fst(rewrite ′(defs, e, scp′(defs, e))) = true)
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If we assume � or have a separate proof � that J-Bob transformation steps respect
the underlying semantics of the language, then the above de�nition is equivalent
to the traditional de�nition of correctness as semantics preservation.

To keep the supercompiler simple � both as implementation and as correct-
ness proof, we reuse an architecture we have already applied in another simple
supercompiler [15]. The implementation is split into layers:

� simpli�cation by basic supercompilation transformations. This layer per-
forms reductions on open expressions, such as if-expressions with a constant
condition, or calls to built-in functions with all arguments being constant.
This layer also performs if-lifting (to be de�ned precisely below) and infor-
mation propagation. No unfolding or folding happens in this layer;

� unfolding layer, using di�erent strategies.

The overall organization of the supercompiler is to perform a sequence of un-
folding steps and a subsequence of basic transformations before and after each
unfolding:

scp = (simplify) ∗ ·(unfold · (simplify)∗)∗
The following subsections explain in detail the transformations applied by each
layer. They also explain what happens with the other typical supercompiler
ingredients � folding, generalization, and whistle � which do not appear explicitly
in the architecture as outlined above.

Before we continue, we show how a proof for the same property (list append
associativity) can look like:

(dethm append−assoc ( xs ys zs )
( equal ( append ( append xs ys ) zs ) ( append xs ( append ys zs ) ) ) )
( l i s t− i nduc t i on xs )
( scp 5 50)
( expand ( ( append 5) ) ( equa l− i f ( append ( append ( cdr xs ) ys ) zs ) (

append ( cdr xs ) ( append ys zs ) ) ) )
( scp 0 50)

)

The proof has only 3 steps (versus 18 in the manual proof) � 2 calls to the
supercompiler (with di�erent options) and 1 manual step. These 3 macro-steps
are expanded to 18 steps before being submitted to J-Bob to check � incidentally
the same 18 steps as in the manual proof, but in a slightly di�erent order.

3.2 Basic Supercompilation Transformations

The proof example from the previous section has already hinted that many of
the elementary program transformations J-Bob performs are similar to those
performed by supercompilation. A detailed analysis of all available transforma-
tions (mostly in the form of axioms in the standard library) con�rms, that we
have all the ingredients to simulate supercompiler actions by J-Bob proof steps.
Table 1 lists a subset of the axioms suitable for our needs. The name and the
de�nition are given exactly as found in the J-Bob standard library, while the
remaining 2 columns illustrate the action of each rule on a typical expression.

We can roughly divide these transformation rules in 3 groups:
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Table 1. Transformation rules

Name De�nition Original expression Result expression
atom/cons (equal (atom (cons x y))'nil) (atom (cons x y)) ' nil

car/cons (equal (car (cons x y))x) (car (cons x y)) x

cdr/cons (equal (cdr (cons x y))y) (cdr (cons x y)) y

if−true (equal (if ' t x y) x) ( if ' t x y) x

if−false (equal (if ' nil x y) y) ( if ' nil x y) y

if−nest−A ( if x (equal (if x y z) y) 't) ( i f x
( . . . ( i f x y z )

. . . )
. . .

)

( i f x
( . . . y . . . )
. . .

)

if−nest−E ( if x 't (equal (if x y z) z)) ( i f x
. . .
( . . . ( i f x y z )

. . . )
)

( i f x
. . .
( . . . z . . . )

)

if−same (equal (if x y y) y) ( if x y y) y

equal−same (equal (equal x x)'t) (equal x x) 't

� rules for performing evaluation of open expressions (atom/cons, car/cons,
cdr/cons, if-true, if-false). They correspond to a form of simple partial
evaluation.

� rules for nested repeated conditions (if-nest-A, if-nest-E). Their de�ni-
tion in J-Bob is less obvious, but it simply corresponds to the way J-Bob en-
codes conditional rewriting rules � as equalities inside if-expressions. These
rules correspond to a form of information propagation (both positive and
negative) as found in supercompilation.

� rules dealing with duplicated arguments in equal and if (if-same, equal-
same). With a few exceptions, such transformations are usually not employed
by supercompilers, but it is easy to include them in our supercompiler.

If we compare these rules to the basic transformations used in other simple su-
percompilers [15], there is one ingredient missing: the ability to lift if-expression
appearing as conditions of other if-expressions. It turns out, however, that such
if-lifting can be performed with a combination of existing rules by using the fact,
that J-Bob rewriting rules can be applied in both directions:

( if ( if q a e) a' e ')

= ( if q ( if ( if q a e) a' e ') ( if ( if q a e) a' e ') ) {if-same, right-to-left}
= ( if q ( if a a' e ') ( if ( if q a e) a' e ') ) {if-nest-A, left-to-right}
= ( if q ( if a a' e ') ( if e a' e ') ) {if-nest-E, left-to-right}

Actually, we can use the same trick to lift if-expressions outside of function
calls. This is not performed by most supercompilers, because it is not safe in
general (it can make a program less terminating). The unsafe step in our deriva-
tion above would be the use of if-same right-to-left. But J-Bob ensures totality
of all expressions, so general if-lifting is a valid transformation in our case.
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3.3 Unfolding and Generalization

Unfolding is possible as a basic transformation step in J-Bob, so we are free to
add it to our supercompiler. The only question is when and in what order � since
J-Bob requires totality proofs for all functions, we are not tied to any partic-
ular evaluation order. We can consider the decision whether to unfold a given
call or not as a form of generalization. That is why we consider unfolding and
generalization together. Experiments with early versions of the supercompiler
for performing proofs have shown, that it is useful to have several strategies for
unfolding:

� best unfolding : We tentatively perform each of the possible unfoldings, sim-
plify the resulting term with the basic transformations from the previous
subsection, and select the one resulting in the smallest �nal expression.

� call-by-name: We select the �rst possible unfolding in leftmost-outermost
order.

� call-by-value: We select the �rst possible unfolding in leftmost-innermost
order.

During each (extended) proof step, the proof author can decide which strategy
is most appropriate, and select it by a switch.

3.4 Folding

As already mentioned, our supercompiler does not perform folding (yet). There
are several reasons for this decision:

� Folding seems much less useful for a supercompiler aimed at producing
proofs, than in a supercompiler tailored for program optimization or analysis.
The reason is that the goal of a J-Bob proof is to reduce a given expression
to 't. If we introduce new function de�nitions by folding, it means we have
given up any chance to arrive to a �nal expression equal to 't.

� It is not obvious how to integrate arbitrary folding inside a J-Bob proof.
J-Bob supports folding steps, but only for existing function de�nitions. It is
not possible to introduce new function de�nitions on-the-�y inside a proof.
Besides, even if there were a way, we would still have to produce a proof of
termination for each newly introduced function de�nition, which is in general
a non-trivial task.

� The lack of folding simpli�es a lot the correctness proof of the supercom-
piler. As we describe just a proof-of-concept experiment, whose main goal
is to have a supercompiler correctness proof performed with the help of the
supercompiler itself, this simpli�cation appears a worthy compromise.

Of course, if we want to use this supercompiler for other tasks beside proof
automation, adding support for folding will be highly desirable. We leave this
task for future work.
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3.5 Whistle

Whistles are critical for the performance of supercompilers aimed at program
optimization and analysis. They must not stop the transformation process too
early, as opportunities for optimization might be lost. But they should not stop
too late either � the supercompiler should not spend too much time producing
a bloated result with a lot of duplication, or even fail to stop at all. In our case,
however, the supercompiler can be called many times inside a single proof, with
di�erent goals in mind. So it is more important to provide better control to the
user in the selection of a suitable transformation strategy in each case, than to
rely on a sophisticated general whistle. To keep our implementation � and its
proof � simple, we have currently settled for a basic whistle using 2 counters: one
limiting the total number of unfoldings to perform and one limiting the number
of basic transformation steps performed between 2 consecutive unfoldings.

4 Implementation Details

4.1 Coq Prototype

Before the actual implementation of the supercompiler in J-Bob Lisp was started,
we implemented a prototype in Coq to study di�erent approaches to the imple-
mentation and their impact on the correctness proof. We used Coq, because
creating proofs of such scale and complexity by hand in J-Bob appeared so
lengthy and tedious as to be completely impractical. Currently the Coq proto-
type contains implementations of the main supercompiler components � basic
transformations and unfolding � as well as a re-implementation of the rewriting
component of J-Bob itself. These implementations match very closely the corre-
sponding code in the J-Bob version. The correctness proofs of the implemented
supercompiler components are almost complete, and demonstrate the feasibility
of formally verifying such a proof in full.

4.2 Implementation in J-Bob

J-Bob is distributed in 2 parallel versions: one that can run inside ACL2 and one
that can run inside any Scheme implementation. The J-Bob sources themselves
are almost identical in the 2 versions, but there are di�erent thin wrappers, which
emulate J-Bob Lisp on top of ACL2 and Scheme respectively. We have chosen
to use the Scheme version and our implementation is in Scheme2, although most
parts of the code are in the restricted Lisp subset supported by J-Bob. The �les3

containing the di�erent parts of the source code are brie�y described in Table 2.
The source �les contain a fair amount of deliberate code duplication, because

we need to use many pieces of code in two di�erent ways. We must execute

2 The code was tested with Racket 6.4, in R5RS emulation mode, with rede�nition of
initial bindings allowed.

3 https://bitbucket.org/dkrustev/jbobscp
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Table 2. Source code �les

File Description
Coq/JBobScp.v Coq prototype
j-bob/* A copy of J-Bob sources, as a git submodule
Scheme/j-bob-rewriter.scm Copies of some de�nitions of J-Bob itself, which

are only needed for the supercompiler correctness
proofs

Scheme/j-bob-rewriter2.scm patched versions of some de�nitions of J-Bob. The
main goal of the changes is to add an explicit re-
turn �ag if a transformation step or a sequence
of steps was successfully applied. All patched ver-
sions have the same names as the original de�ni-
tions, with an added su�x �2�

Scheme/j-bob-scp.scm Implementation of the supercompiler for J-Bob
List programs

Scheme/j-bob-expand-proofs.scm A �proof expander�: taking a list of proofs with
steps using an extended syntax, and expanding
them to simple steps directly accepted by J-Bob

Scheme/j-bob-scp-proofs.scm Proof of correctness for the supercompiler, using
proof automation supplied by the supercompiler
itself.

those parts directly (J-Bob itself, the supercompiler). We also need to reason
about the same code inside J-Bob, which, as a minimum, requires to wrap each
function de�nition with a termination proof and to package all such de�nitions
in an environment, which can be passed to J-Bob at runtime. Simple text �le
comparison can convince us that the parallel versions of duplicated de�nitions
are identical. For example, we can compare j-bob-rewriter.scm (used only
in the proofs) with the original source of J-Bob. Similarly, we can compare
j-bob-scp.scm (which is executed) to j-bob-scp-proofs.scm (which contains
(a part of) the same de�nitions inside the proof environment).

Supercompiler Implementation The main functions of the supercompiler
implementation are as follows:

� (simplify−current fullscp eroot path e) tries to �nd a sequence of suitable basic
transformation steps (Sect. 3.2) for the current subexpression e, which is at
position path inside the top-level expression eroot. The boolean �ag fullscp

indicates whether we want full supercompilation or just a simple form of
partial evaluation.

� (simplify−top fullscp e) returns (if possible) a basic transformation sequence for
a single subexpression of the top-level expression e.

� (simplify∗ defs fullscp fuel e) returns a sequence of basic transformation steps,
which simplify up to (length fuel ) subexpressions of the top-level expression e.
defs is the list of current de�nitions.
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� (unfold−steps−top defs e) returns a list of all possible unfolding steps inside the
expression e.

� (choose−unfold−step defs fullscp whitelist blacklist simplfuel e) returns a single un-
folding step according to the speci�ed strategy:

• if whitelist is not empty, the �rst unfolding (in outermost leftmost order)
for a function in the white-list is returned;
• if blacklist is not empty, the �rst unfolding (in innermost leftmost order)
for a function not in the black-list is returned;
• if both lists are empty, we select the unfolding step, which results in the
smallest new expression (after simpli�cation using simplify∗).

� (scp−steps defs fullscp unfoldfuel whitelist blacklist simplfuel e) is the top-level su-
percompiler function. It returns a sequence of transformation steps for the
expression e, which contains up to (length unfoldfuel) unfolding steps, around
each of which we can have up to (length simplfuel) basic simpli�cation steps.

As we can deduce from these descriptions, the implementation follows closely
the architecture outlined in Sect. 3.1.

Proof Expander On top of the supercompiler implementation we have built a
preprocessor, which takes proofs with a richer set of possible steps, and expands
them into a sequence of standard proof steps, which J-Bob can verify. With this
organization the proofs produced by the supercompiler (or by other extended
tactics) are always checked by J-Bob, therefore we do not need to trust them.
Some of the new proof steps include:

� (scp [<unfolding limit> [<simpli�cation limit> [<unfolding white-list>
[<unfolding black-list>]]]]). This is the step, which calls the supercompiler
on the current goal, and pastes its result at the current point of the proof.
There is also a variant starting with the keyword simpl, which performs a
reduced set of basic transformations, roughly equivalent to simple partial
evaluation. It is useful, for example, when we need to simplify a call where
most of the arguments are constants, as it produces a shorter sequence of
steps.

� (expand (<extended path>) <transformation>). This step always corre-
sponds to a single standard J-Bob step, but it permits an extended syn-
tax for paths, which is easier to use: (path1 (f n) path2) corresponds to
(path1 path3 path2), where path3 is the path to the n-th occurrence of a call
to f in the subexpression found at path1.

Readers interested in examining the source code of the implementation may
�nd it, in places, unnecessarily convoluted. Such complicated tricks are, however,
necessary to overcome limitations of the J-Bob Lisp dialect: no higher-order
functions, no mutual recursion, no let-expressions. While the �rst limitation was
not felt heavily during the development of the supercompiler (which is, after all,
just a few hundred lines), the combination of the last two restrictions proved to
be a major hurdle.
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Supercompiler Correctness Proof All the main supercompiler functions
listed above, as well as many of the auxiliary de�nition they use, return a list
of transformation steps. As a result, the structure of the correctness proof is
quite simple, and follows the structure of the implementation itself: for each
such function de�nition we have a lemma, stating that the returned list of steps
� in a suitable context � can be successfully executed by J-Bob. As an example,
here is the proof for the function simplify−current:
( (dethm s impl i fy−cur rent−cor rec t ( f u l l s c p e root path e )

( i f ( focus− is−at−path ?2 path eroot )
( i f ( equal ( find−focus−at−path2 path eroot ) e )

( equal ( car ( r ewr i t e / s t eps2 ( axioms ) e root ( s impl i fy−cur rent
f u l l s c p e root path e ) ) ) ' t )

' t )
' t ) )

n i l
( scp 1 50 ( s impl i fy−cur rent ) )
( insert−Q (A A A) ( equal ( find−focus−at−path2 path eroot ) ( i f−c ( i f .

Q e ) ( i f .A e ) ( i f .E e ) ) ) )
( (A A A A 1) ( s imp l i f y− i f− co r r e c t f u l l s c p e root path ( i f .Q e ) ( i f .A

e ) ( i f .E e ) ) )
( (A A A Q 2) ( i f ?/ i f−c / i f .Q/ i f .A/ i f .E e ) )
( scp 0 50)
( (A A E A 1) ( s impl i fy−app−correct e root path e ) )
( expand ( ( r ewr i t e / s t eps2 1) ) ( r ewr i t e / s t eps2 ( axioms ) e root ' ( ) ) )
( scp 0 50) )

It contains appeals to some lemmas about auxiliary functions (simplify−if−correct,
simplify−app−correct) and some other manual steps, interspersed with calls to the
supercompiler to �ll in the tedious parts of the proof.

There are a few important design decisions, which substantially simpli�ed
the formal proofs of supercompiler correctness. As the de�nition of correctness
(Sect. 3.1) uses the J-Bob rewriting machinery as a reference point, we use the
same machinery as much as possible in the implementation of the supercompiler
as well. For example, we could implement positive/negative information prop-
agation by keeping track of the set of conditions we know to be true/false, as
we descend recursively inside subexpressions. The J-Bob rewriter uses, however,
a di�erent approach (likely more adapted to its own architecture). There are
functions (prem−A?/prem−E? prem path e), which check if condition prem occurs pos-
itively/negatively somewhere on the given path inside the top-level expression e.
So we chose to use the same functions for information propagation inside the
supercompiler, which is the main reason to carry around the top-level expression
eroot in most supercompiler functions. Another decision, explicitly aimed at sim-
plifying the correctness proof, was to use a small-step-style implementation not
only for the unfolding steps, but for the basic transformation steps as well. The
reason can be explained with the following example. If we simplify the expression
(f e1 e2) using a big-step style, we �rst compute recursively the simpli�cation
steps for e1 and e2 (say steps1 and steps2), and the result for the whole ex-
pression will be (append steps1 steps2). What is important is that we compute
steps2 in the context of the original expression, but the rewriting engine will
have to apply them on the result of applying steps1 to this initial expression.
This mismatch prevents a simple inductive argument, because we cannot use
directly the inductive hypothesis for e2. In order to make such a proof feasible,
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we would have to �rst formalize that the transformation steps for e1 and e2 are
independent, as they treat disjoint subexpressions, which would complicate and
lengthen the proof considerably.

The proof of the full J-Bob supercompiler is far from complete � mostly for
reasons we discuss in the next section. Existing proofs cover many of the basic
transformation steps, however, and clearly demonstrate the importance of super-
compiler proof automation to make them feasible. Completing the formal proofs
should simply be a matter of investing more time and solving some problems un-
related to the use of supercompilation in veri�cation. The Coq prototype shows
there are no important technical di�culties in the formal proofs themselves.

5 Performance Evaluation

Table 3 contains some statistics about the currently existing lemmas in the
supercompiler correctness proof4. The proofs are classi�ed � subjectively � in 3
categories:

1. �typical� proofs, which rely mostly on logical reasoning (analysis by cases,
appeals to existing lemmas, rewriting, . . . );

2. proofs by direct computation (which requires, however, many J-Bob standard
steps);

3. a mixture of the above 2 categories � proofs that for the most part are like
those in the �rst category, but also contain steps using computation over
known values.

The statistics presented in the table support this classi�cation � the values in
the last two columns are very similar within the categories 1 and 2, but quite
distinct between the two categories. Category 3 has more diverse values, but on
average they are between those for category 1 and category 2.

The good news �rst: Even if we completely ignore the statistics of categories
2 and 3, we can conclude that supercompilation is of great help as a form of
proof automation: category 1 has almost an order of magnitude of savings in the
number of proof steps one has to enter manually (7.14 expanded steps per single
original step). If we include all categories, the savings are even more impressive
� almost two orders of magnitude.

The bad news is that the current implementation is too slow to be used
in an interactive fashion. The expansion of all existing proofs (which are only
a part of the full supercompiler correctness proof) takes almost 40 sec in this
experiment; with the time J-Bob requires to verify the expanded proofs, the full
time is almost 75 sec. As J-Bob reevaluates all existing proofs after each user
modi�cation of the current proof, working on the supercompiler correctness proof
requires waiting for over a minute between each 2 interactive proof changes.

4 Tests performed on a laptop with a Intel(R) Core(TM) i7-2640M CPU @ 2.80GHz,
8 GB RAM, OS Microsoft Windows 7 Pro 64 bit, using DrRacket 6.4 with debug
info switched o�.
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Table 3. Correctness proof statistics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1 path-b-exp-induction 3 2 6 110 120 0 66.67% 2.00
1 focus-is-at-path/rewrite-focus-

at-path
18 11 143 5475 5530 611 61.11% 7.94

1 focus-is-at-path/rewrite-focus-
at-path/cons-true

6 1 28 187 190 31 16.67% 4.67

1 simplify-if-correct 14 7 87 3588 3590 764 50.00% 6.21
1 if?/if-c/if.q/if.a/if.e 8 2 58 250 260 0 25.00% 7.25
1 app?-cons/car+cdr 3 2 19 156 150 16 66.67% 6.33
1 simplify-app-quoted-correct 14 9 188 577 590 16 64.29% 13.43
1 list2?-expand-list 5 2 18 156 150 0 40.00% 3.60
1 simplify-app-not-quoted-correct 12 6 92 2668 2670 80 50.00% 7.67
1 simplify-app-correct 7 4 30 265 270 16 57.14% 4.29
1 simplify-current-correct 8 3 37 359 350 32 37.50% 4.63
2 lookup/if-true 1 1 324 422 430 32 100.00% 324.00
2 lookup/if-false 1 1 370 421 430 32 100.00% 370.00
2 lookup/if-nest-a 1 1 462 593 590 78 100.00% 462.00
2 lookup/if-nest-e 1 1 416 577 580 64 100.00% 416.00
2 lookup/atom/cons 1 1 48 172 180 47 100.00% 48.00
2 lookup/equal-same 1 1 186 296 290 15 100.00% 186.00
3 simplify-if-correct-if-true 16 12 1126 2840 2880 330 75.00% 70.38
3 simplify-if-correct-if-false 16 12 1135 3026 3030 392 75.00% 70.94
3 simplify-if-correct-if-nest-a 14 11 1722 5257 5380 623 78.57% 123.00
3 simplify-if-correct-if-nest-e 14 11 1003 3932 3950 376 78.57% 71.64
3 simplify-atom-correct 25 11 1180 5397 5410 95 44.00% 47.20
3 simplify-equal-correct 29 16 589 2434 2430 47 55.17% 20.31
1 Total by category 99 49 707 13916 13990 1566 49.49% 7.14
2 Total by category 6 6 1806 2481 2500 268 100.00% 301.00
3 Total by category 114 73 6755 22886 23080 1863 64.04% 59.25

Total 219 128 9268 39283 39570 3697 58.45% 42.32
Total time with proof checking 73726 74140 4335

Column Description

(1) Lemma category
(2) Lemma name
(3) Total number of steps in original proof
(4) Number of supercompilation steps in original proof
(5) Total number of steps after proof expansion
(6)-(8) CPU/real/GC time (msec) for proof expansion (including supercompi-

lation), as reported by Racket's time function
(9) Frequency of supercompilation steps in original proof
(10) Ratio of expanded to original proof steps
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Initially the performance of the system was even worse, but we managed
to improve it substantially by adding some new options to the supercompiler:
a call-by-value unfolding strategy was added beside the existing ones (�best�
unfolding and call-by-name); a �ag was added to perform only a reduced set of
basic transformation steps, corresponding to a form of simple partial evaluation.
Table 4 demonstrates the e�ect of these options on the most time-consuming
proofs in category 2. These proofs contain only a single call to the supercompiler,
and they can be completed by using any combination of options, which makes
them suitable for this comparison. The table shows � as expected � that CBV
outperforms a lot CBN and that simple partial evaluation is a little bit better
than full supercompilation. Of course, such comparisons are meaningful only
when all options lead to the same result in the corresponding proof.

Table 4. Evaluation strategy statistics

Full supercompilation Simple partial evaluation
CBN CBV CBN CBV
(1) (2) (1) (2) (1) (2) (1) (2)

lookup/if-true 1038 4960 498 592 716 2840 324 422
lookup/if-false 1226 6209 569 624 858 3478 370 421
lookup/if-nest-a 1632 8830 711 749 1172 4977 462 593
lookup/if-nest-e 1424 6989 640 717 1010 4134 416 577
lookup/atom/cons 120 390 72 203 74 327 48 172
lookup/equal-same 534 2028 285 406 350 1295 186 296

Column Description

(1) Total number of steps after proof expansion
(2) CPU time (msec)

Even with these improvements we still need one �quick-and-dirty� trick to
get around the performance problem. Proofs are split into smaller pieces (in
the form of auxiliary lemmas). Especially those parts of a proof, which involve
direct computation only, are extracted as separate lemmas whenever it is not too
complicated. (This is the real reason for the existence of all lemmas in category
2.) After the proof of each such lemma is ready and checked, we shunt it by
replacing it with a fake proof, which consists of only a single J-Bob standard
step (using a fake axiom). Such shunting is especially useful for the lemmas in
categories 2 and 3. When it is put in place, the total time for proof expansion
and checking goes down to a little over 10 sec on the same machine, which is
already (barely) acceptable for interactive proof editing. Still, the rechecking
time between proof modi�cations will go up as we continue to make progress
towards a full proof of supercompiler correctness (comparable to that in the
Coq prototype). Given the current performance of the system, we decided to
postpone the work towards completing the proof until we can achieve more
improvements in its reactivity.
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If we want better improvements in performance, we must �rst analyze the
causes for the current long processing times. They seem mostly related to the
underlying proof assistant:

� J-Bob does not have its own interactive editor or shell. It just provides a
simple high-level API, which can be used directly from the Scheme REPL.
As this API is stateless, it entails full rechecking of all current proofs after
each user interaction.

� J-Bob only allows very elementary program transformations as proofs steps.
Allowing even a simple form of partial evaluation as a built-in proof step
(similar to what proof assistants like Coq and Agda provide) would eliminate
a big source of ine�ciency in the proofs listed in Table 3.

� The restrictions of J-Bob's Lisp subset � especially the lack of let-expressions
� often make it too hard to write an e�cient version of the algorithm one
has in mind. Instances of this problem exist inside the sources of both J-Bob
itself and our supercompiler: sometimes they perform multiple traversals or
repeat some computations just because of the lack of let-expressions.

Of course, all these limitations stem from the goal of J-Bob: to be a minimalistic
proof assistant used mostly for educational purposes. Solving some of these lim-
itations � such as the introduction of a built-in partial evaluation step � would
require modifying J-Bob itself, and making it bigger, more complex, and po-
tentially less reliable. Some other limitations can probably be removed without
touching the J-Bob core. Adding let-expressions can likely be done by a prepro-
cessor. A dedicated J-Bob REPL (or even just a statefull API for the Scheme
REPL) would avoid the need to recheck all proofs after each interaction. We
leave the study of these possibilities for future work.

6 Related Work

Proof automation is a large and active research area, covering a broad range
of methods. The bibliography of one recent book [7] has about 700 references.
We shall therefore not attempt a thorough comparison of the current method to
other existing methods for proof automation, limiting ourselves instead to just
a few works we consider most relevant.

J-Bob is closely related to ACL2 [10] and Milawa [1], as they all follow the
traditions of the early Boyer-Moore prover, Nqthm. But because of their di�er-
ent intended usage, these provers have important di�erences. While J-Bob is a
minimalistic educational tool, with no proof automation at all, both ACL2 and
Milawa have facilities for proof automation. ACL2 is an industrial-strength the-
orem prover with powerful methods for automatic proof search. Its architecture
is monolithic, without a dedicated core, and bugs anywhere in the system can
impact its soundness as a prover [1]. Milawa is another prover in the Nqthm
family, which proposes an interesting solution to the soundness and trusted-core
problems. Its minimal core proof checker has to be trusted, while a re�ection
mechanism allows a new proof checker to be installed, if its soundness can be
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veri�ed by the current checker. By repeatedly installing new proof checkers,
which accept higher-level proof steps, the level of Milawa can be raised to one
approaching in power ACL2 [1]. In our approach, we leave the core proof checker
(J-Bob) untouched, and instead expand higher-level proof steps into sequences
of steps it can check. Such proof expansion can lead to high processing-time re-
quirements in larger proofs. On the other hand, Milawa requires trusting not only
its core proof checker (which appears even simpler than J-Bob), but also its re-
�ection mechanism. We leave a more detailed comparison of the two approaches
for future work.

The idea to apply supercompilation for proof automation appears already in
some of Turchin's early papers [23]. Di�erent speci�c applications of veri�cation
by supercompilation have been studied [11,13,18,19]. In all these cases we have
to rely on the correctness of the used supercompiler, or have it proven correct,
in order to trust the results of veri�cation. There is even a theorem prover based
on distillation (a program transformation method closely related to supercompi-
lation) � Poitín [6]. Again, it appears that distillation is closely integrated into
the kernel of this prover, so that bugs in its implementation may impact the
soundness of the proved results.

Klyuchnikov et al. [14] propose an elegant solution to avoid the necessity
to trust that the supercompiler is bug-free. They introduce a certifying super-
compiler, which produces � together with the resulting transformed program �
a proof that it is equivalent to the input program. This proof may be veri�ed
by an independent proof checker (hopefully much simpler than the supercom-
piler, and so with lower probability of soundness-critical bugs). We use the same
idea, with a shortcut: our supercompiler produces only a proof, and the resulting
program can be recovered from this proof by an independent process. Another
important di�erence is that the supercompiler of Klyuchnikov et al. is imple-
mented in a language (Scala) very di�erent from the one it can treat (a version
of Martin-Löf type theory). So their supercompiler cannot be used directly for
its own veri�cation.

Self-application has long been a desirable � but also somewhat elusive �
goal in the context of supercompilation and partial evaluation in general. This
interest stems mostly from the possibility to apply the Futamura projections [4],
which enable the production of compilers from interpreters, and of compiler
generators. Such optimizing self-application has been demonstrated �rst with
partial evaluation [9], and then extended to cover online partial evaluation [5].
It appears harder to achieve in the context of supercompilation � there is a
single description of successful experiments of self-application with a version of
the Refal supercompiler [20]. The supercompiler we describe is self-applicable
� in a sense that it can process programs in the same language it is written
in. It cannot hope to achieve Futamura-projection-like self-application, mostly
because it currently lacks folding. As we have demonstrated, it is still powerful
enough to be used in proofs reasoning about its own sources.

The formal veri�cation of supercompilers has recently emerged as an inter-
esting research topic. In earlier work [15] we have demonstrated � on a simple
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supercompiler for a tiny imperative language � the feasibility of this task. The
current work reuses some ideas of that previous veri�cation e�ort, most notably
the decomposition of the supercompilation process in several phases. Subsequent
research on formal correctness proofs for supercompilers has mostly concentrated
on providing general frameworks, which can simplify the veri�cation of many dif-
ferent supercompilers [16, 17, 21]. In all these cases a general proof assistant is
used (Coq, Agda), and no attempt is made to use a supercompiler as a proof
automation tool for its own veri�cation.

7 Conclusions and Future Work

We have described the design of a certifying supercompiler, which can work to-
gether with a proof assistant (J-Bob) and supply automatically generated proof
fragments upon request by the proof assistant user. The supercompiler is also
self-applicable, as it is written in the same �rst-order subset of Lisp, which it can
process. This feature cannot currently be used for producing Futamura projec-
tions, as the system does not implement folding yet. Self-application, however,
permits the supercompiler to supply proof automation for its own correctness
proof. To the best of our knowledge, this is the �rst successful experiment, where
a supercompiler can assist its own formal veri�cation. We have quanti�ed the
amount of proof automation the supercompiler provides by measuring the ra-
tio of high-level proof steps (relying on supercompilation) versus low-level proof
steps that the proof checker can verify directly. This ratio shows an almost
two-orders-of-magnitude improvement, when calculated on the ready part of the
supercompiler correctness proof. We estimate that such improvement is su�cient
as proof-of-concept for the applicability of the proposed approach.

An interesting feature of our approach is that the user is not forced to use the
supercompiler in a one-shot, all-or-nothing fashion on a given problem. Instead,
the user builds formal proofs in interaction with a proof assistant, and at each
step of the proof she may try to call the supercompiler for help. It would be
interesting to study if such an incremental approach can work in other domains
(like program analysis).

To make the implemented system really practical for users of J-Bob, we need
to solve the performance problems we have detected while working on the su-
percompiler correctness proof. Our analysis indicates most of these performance
issues are ultimately related to limitations of J-Bob itself. We have outlined some
possible solutions, which we may try in the future.

Another interesting possibility is to apply the same approach to di�erent
proof assistants, featuring di�erent programming languages. As Klyuchnikov et
al. [14] have demonstrated, it is possible to build a certifying supercompiler for a
language with higher-order functions and dependent types, such as those found in
proof assistants like Coq and Agda. The challenge will be to produce a similar
supercompiler, which is self-applicable and integrated with the corresponding
proof assistant.
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Abstract. We consider a class of simple (iteration/recursion-free) pro-
grams operating on unlabeled binary trees. We introduce a cumulative
hierarchy of subclasses of programs, which cover the whole class, such
that a �nite adequate test set exists for each subclass. By taking the
minimum subclass, in which a pair of programs live, we can decide just
by testing if they are extensionally equivalent.

1 Introduction

Program testing and decidability of program equivalence are two topics with
numerous theoretical and practical applications. These topics are closely related
on a fundamental level [3]. Both problems � existence of an adequate �nite test
set and program equivalence � are undecidable not only for Turing-complete
languages, but also for many smaller classes of programs [3]. So, discovering
classes of programs, for which one or both problems are decidable, can be of
great interest. Here we study one such speci�c class of programs operating on
unlabeled binary trees. Programs are composed of operations for building trees,
checking tree emptiness, and extracting subtrees. The language is variable-free,
similar to Backus' FP [2].

The main results we present are:

� the de�nition of a cumulative hierarchy of subclasses of programs covering
the whole class � Sect. 4.2 (based on a de�nition of program normal forms
introduced previously by the author [8, 10]);

� proofs of existence (Sect. 4.4) and optimality (Sect. 4.5) of �nite adequate
test sets for programs in each subclass;

� a decision procedure for program equivalence (Sect. 5), based on the existence
of �nite adequate test sets.

We start by introducing the class of simple programs we consider (Sect. 2).
We then brie�y review the notion of program normal forms (Sect. 3), which is
obtained by program transformations directly inspired by supercompilation and
deforestation [13,15,16]. Some de�nitions related to program testing are brie�y
introduced in Sect. 4.1. The rest of Sect. 4 is devoted to the description of our
main result � the existence of �nite adequate test sets.
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We can illustrate the proposed method on a simple example. Consider the 2
programs in Table 1. The �rst one (I) simply returns the input tree unchanged.
The second (ifnil(I, nil, cons(hd, tl))) returns an empty tree if the input tree
is empty, otherwise it builds a new tree containing the left and right subtree of the
input as left and right subtree correspondingly. Clearly both programs compute
the identity function. We can prove this fact in many ways, but using the main
result of this article (Theorem 1) we can just check it by direct computation �
comparing the results of the 2 programs on input trees of depth ≤ 2.

Table 1. Example of deciding program equivalence by testing

input I ifnil(I, nil, cons(hd, tl))

nil nil nil

(nil . nil) (nil . nil) (nil . nil)
((nil . nil) . nil) ((nil . nil) . nil) ((nil . nil) . nil)
(nil . (nil . nil)) (nil . (nil . nil)) (nil . (nil . nil))
((nil . nil) . (nil . nil)) ((nil . nil) . (nil . nil)) ((nil . nil) . (nil . nil))

2 Simple Programs on Binary Trees

The programs we consider operate on unlabeled binary trees. We use textual
Lisp-like notation for such trees, whose grammar is:

T ::= nil | (T . T )

As an example, the notation (nil . (nil . nil)) corresponds to the tree in Fig.
1.

•

nil •

nil nil

Fig. 1: Tree (nil . (nil . nil))

While this data structure is simple, it is universal, as we can encode arbitrary
data as such trees. We give examples of such possible encodings below:

� d•eBool : Bool→ T
dfalseeBool = nil
dtrueeBool = (nil . nil)
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� d•eN : N→ T
d0eN = nil
dn+ 1eN = (nil . dneN)

� d•eList(X) : List(X)→ T

d[]eList(X) = nil
d[x1, x2, . . . , xn]eList(X) = (dx1eX . d[x2, . . . , xn]eList(X))

There are other, more popular universal data types in computer science � such as
natural numbers and bit-strings. A distinctive advantage of binary trees is that
they natively support pairing as a primitive operation, making the encoding of
complicated data structures easier.

We can de�ne the depth of a binary tree recursively in an obvious way and
introduce sets of trees TN of depth no more than N ∈ N:

depth : T → N
depth(nil) = 0
depth(t1 . t2) = 1 +max (depth(t1), depth(t2))
TN = {t ∈ T | depth(t) ≤ N}

The programs we consider are expressions (Fig. 2) built of:

� operations for constructing (nil, cons) and destructing (hd, tl) trees;
� conditional operation (ifnil);
� identity function (I) and function composition (◦).

As these programs are just expressions, we shall use both terms interchangeably.
Note that there are no variables in our language. This is not an important limi-
tation, as the combination of built-in pairing and function composition permits
us to encode an arbitrary set of variables [2,7,8]. The semantics of our language
is de�ned in Fig. 3. To capture the possibility of errors during program execu-
tion, we use a domain extended with a new distinct element ⊥: T⊥ := T ∪ {⊥}.
In the de�ning equations we use wild-cards (�_�) to match arbitrary items not
matched in any previous equation.

E ::= I | hd | tl | nil | cons(E,E) | E ◦ E | ifnil(E,E,E)

Fig. 2: Program syntax

Clearly, the class of programs we consider is far from Turing-complete, lack-
ing any means for expressing iteration or recursion. As we are interested in de-
cidable (extensional) equivalence, however, it is essential to consider restricted
languages, as for more expressive languages equivalence is typically undecidable.
This undecidability holds not only for Turing-complete languages, but even for
relatively small subsets of the primitive-recursive functions, for example the class
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J•K : E → T⊥ → T⊥
JIK(x) = x
JhdK(t1 . t2) = t1
JtlK(t1 . t2) = t2
JnilK(x) = nil

Jcons(e1, e2)K(x) = (Je1K(x) . Je2K(x))
Je1 ◦ e2K(x) = Je1K(Je2K(x))
Jifnil(e1, e2, e3)K(x) = Je2K(x) , if Je1K(x) = nil

Jifnil(e1, e2, e3)K(x) = Je3K(x) , if Je1K(x) = (t1 . t2)
J_K(_) = ⊥

Fig. 3: Program semantics

of elementary functions. Our class of simple programs is inspired by the simple
programs introduced by Tsichritzis [14]. An important di�erence is that our do-
main consists of binary trees (and thus has a pairing operation), while Tsichritzis
uses natural numbers as a domain and pairing is not de�nable.

3 Program Normal Forms

We can apply a number of simplifying transformations on expressions in the
class we consider. Let sel ∈ Sel := {hd, tl}; the transformations we use are:

I ◦ e = e ◦ I = e (1)

sel ◦ cons(e1, e2) = ei (2)

nil ◦ e = nil (3)

cons(e1, e2) ◦ e3 = cons(e1 ◦ e3, e2 ◦ e3) (4)

e ◦ ifnil(e1, e2, e3) = ifnil(e1, e ◦ e2, e ◦ e3) (5)

ifnil(e1, e2, e3) ◦ e = ifnil(e1 ◦ e, e2 ◦ e, e3 ◦ e) (6)

ifnil(nil, e1, e2) = e1 (7)

ifnil(cons(eh, et), e1, e2) = e2 (8)

ifnil(ifnil(e1, e2, e3), e
′
2, e

′
3) = ifnil(e1, ifnil(e2, e

′
2, e

′
3),

ifnil(e3, e
′
2, e

′
3)) (9)

Transformations 1-6 permit to simplify instances of function composition (by
either eliminating it completely or by pushing it inside subexpressions). Ta-
ble 2 shows that these rules cover all cases of function composition, except for
sel i ◦ sel j . After these rules are applied to the condition of an if-expression, the
remaining rules 7-9 allow to simplify it further.

If we exhaustively apply these transformations in a bottom-up manner, the
resulting programs will be of the form shown in Fig. 4 (with an empty list of
selectors being equivalent to I). We omit a detailed description of the algorithm
nf : E → Enf for producing normal forms, and the proofs of its properties
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Table 2. Simpli�cation rules for function composition

◦ I hd/tl nil cons(·, ·) ifnil(·, ·, ·)
I (1) (1) (1) (1) (1)

hd/tl (1) � ⊥ (2) (5)
nil (1) (3) (3) (3) (3)

cons(·, ·) (1) (4) (4) (4) (4)
ifnil(·, ·, ·) (1) (6) (6) (6) (5)

Enf ::= nil | cons(Enf , Enf )
| sel1 ◦ . . . ◦ seln (n ≥ 0)

| ifnil(sel1 ◦ . . . ◦ seln, Enf , Enf ) (n ≥ 0)

Fig. 4: Syntax of program normal forms

(shape of normal forms, semantics preservation), as both the algorithm and the
proofs appear in previous works by the author [8, 10].

We can illustrate the transformation of programs into normal form with
a simple example � the composition of 2 Boolean negations. The result is, as
expected, a program converting an arbitrary input tree into (an encoding of) a
Boolean value, without negation.

nf (ifnil(I, cons(nil, nil), nil) ◦ (ifnil(I, cons(nil, nil), nil)))
= ifnil(I, nil, cons(nil, nil))

The transformation rules described above are very similar to those used in
supercompilation [13, 15] and deforestation [16]. In fact, we can consider the
method for producing normal forms as a simple kind of supercompilation. As
our language does not have loops or recursion, we do not need many of the
complications involved in supercompilers for more powerful languages, such as
folding, whistle, generalization.

4 Finite Adequate Test Sets for Simple Programs

4.1 Some Notions Related to Program Testing

We summarize here some de�nitions related to program testing used in the
rest of the paper. We borrow most de�nitions from Budd et al. [3], but with
slight di�erences in notation. In this subsection we consider an arbitrary set of
programs P over a set of data D. The semantics of programs is given by an
evaluation function J•K : P → D → D.

� Given a program p ∈ P , a program neighborhood1 is any subset of programs
Φ(p) ⊆ P , such that p ∈ Φ(p).

1 not to be confused with neighborhood analysis as a metacomputation technique
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� A test set is a subset of data T ⊂ D (usually tacitly assumed �nite).
� A test set T is adequate for a program p (relative to a neighborhood Φ(p))

if for any program q ∈ Φ(p) it holds:

(∀d ∈ D, JpK(d) = JqK(d))↔ (∀d ∈ T, JpK(d) = JqK(d))
The left-to-right direction in the last de�nition is trivial, as T ⊂ D; it is the
right-to-left direction, which is important.

Relatively adequate test sets are often non-computable [3]:

� if Φ(p) are all programs in any Turing-complete language
� . . . or all primitive recursive programs on N
� . . . or even all programs computing polynomials with integer coe�cients
� . . .

So, it is interesting to study classes of program neighborhoods, for which such
tests are computable.

4.2 Subclasses of Simple Programs as Program Neighborhoods

Given some N ∈ N we de�ne a subclass Enf
N of expressions in normal form as

those satisfying the following grammar:

Enf
N ::= nil | cons(Enf

N , Enf
N )

| sel1 ◦ . . . ◦ seln (0 ≤ n ≤ N)

| ifnil(sel1 ◦ . . . ◦ seln, Enf
N , Enf

N ) (0 ≤ n < N)

It is immediately obvious from this de�nition that these subclasses form a cu-
mulative hierarchy covering the whole set of normal forms Enf :

� Enf
N  Enf

N+1;

�
⋃

N∈NE
nf
N = Enf .

Note also that each subclass contains in�nitely many programs. By extension,
we classify any program e ∈ E to be in subclass Enf

N if nf (e) ∈ Enf
N . The main

intuition behind the introduction of these subclasses is that programs in Enf
N

can only �see� at depth not more than N inside the input tree. This intuition is
made formal by the following statement, which is the main result of this article:

Theorem 1. (NTrm_fixed_MaxSelCmpLen_testable2) ∀N ∈ N,∀e1, e2 ∈ Enf
N ,

(∀t ∈ TN+1, Je1K(t) = Je2K(t)) → ∀t ∈ T, Je1K(t) = Je2K(t)
If we compare this result with the de�nitions from the previous subsection,

we can see that the classes Enf
N can serve perfectly as program neighborhoods:

if e ∈ Enf
N , and we set Φ(e) := Enf

N , Theorem 1 shows there is a computable
adequate test set for e. We devote the following subsections to an overview of
the proof of this theorem.

2 The results of this article have been formally veri�ed in Coq. In parentheses we
give the corresponding names of the theorems/lemmas in the Coq sources � https:

//github.com/dkrustev/SimpleTreeExprTests
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4.3 Tree Decomposition

In order to formalize the intuition about programs in Enf
N �seeing� at depth at

most N inside the input tree, we consider the decomposition of a tree t into (Fig.
5):

� a tree t1 ∈ TN , which is isomorphic to t up to depth N ;
� trees t2, . . . , tn corresponding to all subtrees (if any) of t with roots at depth
N .

•
t1

...
•

nil ...

•
ti

...
...

•
tj

...
...

d

Fig. 5: Tree decomposition

To be able to recover the original tree t from its decomposition t1, t2, . . . , tn,
we need to indicate the position of each ti (i ∈ {2, . . . , n}) inside t1. One way to
achieve it is to introduce trees with variables: given a (�nite) set X of variables,
the set TX of trees with variables in X is given by the following grammar:

TX ::= nil | (TX . TX) | x (x ∈ X)

The decomposition function is then cutAt : N × T → (X → T ) × TX ,
cutAt(d, t) = (σ, tx), where:

� tx is the tree t with all nodes at depth d replaced by variables from X
� σ is a substitution assigning the corresponding subtree to each of these vari-

ables

Example:
cutAt(1, ((nil . nil) . ((nil . nil) . nil)))

= ({x 7→ (nil . nil), y 7→ ((nil . nil) . nil)},
(x . y))
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The action of variable substitutions is lifted to trees in the obvious way:

nilσ = nil

(t1 . t2)σ = (t1σ . t2σ)
xσ = σ(x)

The correctness of the decomposition function follows from the next lemma.

Lemma 1. (vCutAt_mvSubst) ∀d ∈ N,∀t ∈ T, ∀σ, ∀tx, cutAt(d, t) = (σ, tx) →
txσ = t.

As cutAt is de�ned by structural recursion over the input tree t, the proof of its
correctness is by straightforward induction on t.

4.4 Existence of Adequate Test Sets

The proof of our main result relies on a couple of key observations. The �rst is
that we can commute evaluation and substitution, provided the input tree with
variables contains no variables at depth N or less. Before we write down this
lemma, let us introduce some de�nitions. We can extend the evaluation function
to work on trees with variables as well, denoted JeKX : E → TX⊥ → TX⊥ . We
can use exactly the same de�nition as in Fig. 3, as we want the evaluation to
return an error (⊥) whenever it encounters a variable as (top-level) input. The
de�nition of minimum variable depth is equally straightforward:

minVarDepth(nil) =∞
minVarDepth(t1 . t2) = 1 +min(minVarDepth(t1),minVarDepth(t2))
minVarDepth(x) = 0

Now our conditional commutativity property looks as follows:

Lemma 2. (ntmvEval_ntEval) ∀N ∈ N,∀e ∈ Enf
N ,∀X, ∀σ : X → T, ∀tx ∈ TX ,

N ≤ minVarDepth(tx)→ JeK(txσ) = (JeKX(tx))σ.

The proof is by induction on the structure of e. We use the condition N ≤
minVarDepth (tx) in several cases to derive a contradiction.

The second key observation is that if we have a pair of syntactically di�erent
trees with variables, we can always build a �shallow� substitution, which � when
applied to each of the 2 trees with variables � produces di�erent ordinary trees.
The substitution in question is shallow in the sense that it maps all variables to
trees of depth 0 or 1.

Lemma 3. (mvSubst_discrim) ∀X,∀t1, t2 ∈ TX , t1 6= t2 → ∃σ, (∀x ∈ X, σ(x)
∈ T1) ∧t1σ 6= t2σ.

Proof sketch: there must be at least one pair of corresponding subtrees t′1 and
t′2 with di�erent root nodes

� if neither root is a variable, then the trivial substitution will do: σ(x) =
nil,∀x ∈ X;
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� if only one root is a variable, say y
• if the other root is nil, then σ(x) = if x = y then (nil . nil) else nil;
• if the other root is (t3 . t4), then σ(x) = if x = y then nil else (nil . nil);

� if t′1 = x, t′2 = y, then we can use:

σ(x) = nil

σ(y) = (nil . nil)
σ(z) = nil ∀z ∈ X, z 6= x, z 6= y.ut

Armed with these observations, we can proceed with establishing the exis-
tence of �nite adequate test sets:

Lemma 4. (NTrm_fixed_MaxSelCmpLen_testable_aux) ∀N, ∀e1, e2 ∈ Enf
N , (∃

t ∈ T, Je1K(t) 6= Je2K(t)) → ∃t ∈ TN+1, Je1K(t) 6= Je2K(t).
Proof sketch:

� let t ∈ T , s.t. Je1K(t) 6= Je2K(t)
� let (σ, tx) = cutAt(N, t)
� then Je1K(txσ) 6= Je2K(txσ) (by Lemma 1)
� commute evaluation and substitution: (Je1KX(tx)) σ 6= (Je2KX(tx)) σ (by

Lemma 2)
• possible because cutAt(N, t) = (σ, tx) ensures the required condition
N ≤ minVarDepth(tx)

� so Je1KX(tx) 6= Je2KX(tx)
� the most interesting case is when both evaluation results are 6= ⊥
� then (by Lemma 3) we can �nd σ′ s.t. all σ′(x) ∈ T1 and (Je1KX(tx))σ

′ 6=
(Je2KX(tx))σ

′

� commute substitution and evaluation (again by Lemma 2): (Je1K(txσ′)) 6=
(Je2K(txσ′))

� let t′ = txσ
′; we have t′ ∈ TN+1 and Je1K(t′) 6= Je2K(t′). ut

Now it su�ces to remark that Lemma 4 is just the contrapositive of Theorem
1, which concludes the proof of our main result.

4.5 Test Set Optimality

If we consider the whole set Enf
N as a neighborhood of the program e ∈ Enf

N ,
we cannot substantially improve the size of the adequate test set provided by
Theorem 1, as the following theorem shows:

Theorem 2. (undiscrTerms_exist) ∀N ∈ N,∃e1, e2 ∈ Enf
N+1, such that ∀t ∈

TN+1, Je1K(t) = Je2K(t) and ∃t ∈ T, Je1K(t) 6= Je2K(t).
Proof sketch: it su�ces to take

e1 = hd ◦ e
e2 = tl ◦ e, where:
e = hd ◦ . . . ◦ hd︸ ︷︷ ︸

N times

ut
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5 Decidability of Equivalence of Simple Programs

One direct application of the existence of �nite adequate test sets is the decid-
ability of equivalence for our class of simple programs. If we consider 2 programs
e1, e2 ∈ E, we can proceed as follows:

� �nd the smallest N , such that nf (e1),nf (e2) ∈ Enf
N ;

� test if Je1K(t) = Je2K(t) for all t ∈ TN+1

If there is some t, for which the 2 programs return di�erent results, they are
clearly not equivalent. If, however, there is no such t ∈ TN+1, then by Theorem
1 it follows that the 2 programs are equivalent.

The asymptotic complexity of this decision procedure is superexponential.
Indeed, the number of unlabeled binary trees of depth no more than N is given
by the following recurrence:

a0 = 1

aN+1 = a2N + 1

According to OEIS [12], aN � c2
N+1

where c = 1.2259 . . ., which directly gives an
superexponential bound for our algorithm. We leave as future work the search for
algorithms of lower complexity. One idea that might work is to consider smaller
subclasses of expressions of the following form:

Enf
S ::= nil | cons(Enf

S , Enf
S )

| sel1 ◦ . . . ◦ seln (sel1 ◦ . . . ◦ seln ∈ S)
| ifnil(sel1 ◦ . . . ◦ seln, Enf

S , Enf
S ) (sel1 ◦ . . . ◦ seln ∈ S)

If we can adapt our proof of existence of adequate test sets to this kind of smaller
program neighborhoods, we can hope to get asymptotically smaller tests sets and
as a result � a faster decision procedure for program equivalence.

6 Related Work

As already noted, the main results in this paper are very similar to � and to some
extent inspired by � the work of Tsichritzis [14]. Tsichritzis starts with a sub-
class of primitive-recursive programs on natural numbers � namely, those having
no nested loops � and �rst shows that all such programs can be represented
as compositions of several simple operations. Then �nite test sets are de�ned
for this language, and � as a consequence � a decision procedure for program
equivalence. We, on the other hand, start directly with a language consisting of
expressions, which are composed of several simple operations on binary trees.
Still, the languages considered are very similar in spirit, modulo di�erences in the
data domains. The use of binary trees is an important advantage of our approach:
as we have already noted, binary trees come with pairing as a built-in primitive,
and it permits easy encoding of arbitrary data structures. The language, treated
by Tsichritzis, is too weak to encode arbitrary pairing.
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Binary trees have often been used in practical programming languages since
the early days of Lisp. While most theoretical models of computation use either
natural numbers or sequences over a �xed alphabet as the only data structure,
several authors have noted the usefulness of binary trees in a more theoretical
setting as well, for example Jones [7]. The variable-free nature of our language
has its roots in Backus' FP [2], but Jones has proposed a similar language of a
single variable [7].

The main results we report are enabled by the speci�c shapes of normal forms
that we can produce by supercompilation-like program transformations. In this
respect, the current work is an o�shoot of some of the author's previous research
on supercompilation [8,10]. Supercompilation � and metacomputation techniques
in general � are the basis of several other methods for test generation [1, 9, 10].
Abramov's neighborhood testing [1] ensures strong adequacy properties for the
generated test sets and covers arbitrary languages, but it is not guaranteed to
terminate. Our skeleton testing method [10] produces adequate test sets for a
Turing-complete functional language, but the program neighborhoods are �nite
and the test sets actually use program expressions instead of simple data values.
We have also proposed a test-generation method based on metacomputation
(used for program inversion) [9], which is more practically oriented, but without
any formal adequacy guarantees.

The literature on program testing techniques is too big to review here. We
just note several methods, which � similarly to ours � produce �nite adequate
test sets3 for restricted classes of programs:

� the already discussed work of Tsichritzis [14] � primitive recursive programs
on natural numbers without nested loops;

� programs computing multivariate polynomials of a known degree with inte-
ger coe�cients [4, 6];

� programs computing multivariate polynomials of unknown degree with nat-
ural coe�cients [5, 11].

7 Conclusions and Future Work

We have presented a class of simple programs operating on binary trees, which
can be split into subclasses, such that for each subclass there exists a �nite
adequate test set. As a direct consequence, equivalence of programs in the whole
class is decidable. The de�nition of the subclasses is made possible by converting
programs into a normal form with speci�c shape, through supercompilation-like
transformations.

The practical application of the equivalence decision procedure is hindered
by its superexponential complexity. We have already mentioned some ideas that
might help reduce this complexity, but more work is needed to �esh them out.
The size of the test set (which is the cause for the decision procedure complexity)
is also a hurdle for the practical application of the test generation method. A

3 Possibly for a slightly di�erent de�nition of �adequate�
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potential approach for reducing the test set size, which we plan to explore, is
to use trees with variables as test inputs and outputs. Another problem with
applying the method for practical program testing is the use of a very restricted
language, which does not by itself permit writing many interesting programs.
One possibility is to study the use of the language of simple programs discussed
here as the core of a Turing-complete language. For example, we can use a simple
imperative language with while loops, similar to the ones used by Jones [7] and
in our earlier work [8], with the language of simple programs being embedded as
a sublanguage of expressions. The key research problem will be how to extend
the test generation method from expressions to programs in the full language.

Another interesting problem, which we may consider in the future, is the more
precise characterization of the expressiveness of the class of simple programs we
have studied.

Acknowledgments I would like to thank Alexei Lisitsa for comments that
helped improve the presentation of this article.
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Abstract. In this paper the problem of verification of functional pro-
grams (FPs) over strings is considered, where specifications of properties
of FPs are defined by other FPs, and a FP Σ1 meets a specification de-
fined by another FP Σ2 iff a composition of functions defined by the FPs
Σ1 and Σ2 is equal to the constant 1. We introduce a concept of a state
diagram of a FP, and reduce the verification problem to the problem
of an analysis of the state diagrams of FPs. The proposed approach is
illustrated by the example of verification of a sorting program.

Keywords: functional program, state diagram, verification

1 Introduction

The problem of program verification is one of the main problems of theoretical
computer science. For various classes of programs there are used various verifi-
cation methods. For example, for a verification of sequential programs there are
used Floyd’s inductive assertions method [1], Hoare logic [2], etc. For verification
of parallel and distributed programs there are used methods based on a calculus
of communicating systems (CCS) and π-calculus [3], [4], a theory of communi-
cating sequential processes (CSP) and its generalizations [5], [6], temporal logic
and model checking [7], process algebra [8], Petri nets [9], etc.

Main methods of verification of functional programs (FPs) are computational
induction and structural induction [10]. Disadvantages of these methods are
related to difficulties to construct formal proofs of program correctness. Among
other methods of verification of FPs it should be noted a method based on
reasoning with datatypes and abstract interpretation through type inference [12],
a model checking method to verify FPs [13], [14], methods based on flow analysis
[11] methods based on the concept of a multiparametric tree transducer [15].

In this article we consider FPs as systems of algebraic equations over strings.
We introduce a concept of a state diagram for such FPs and present the verifica-
tion method based on the state diagrams. The main advantages of our approach
in comparison with all the above approaches to verification of FPs are related
to the fact that our approach allows to present proofs of correctness of FPs in
the form of simple properties of their state diagrams.
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The basic idea of our approach is the following. We assume that a specifica-
tion of properties of a FP under verification Σ1 is defined by another FP Σ2,
whose input is equal to the output of Σ1, i.e. we consider FP Σ1 ◦Σ2, which is
a composition Σ1 and Σ2. We say that a FP Σ1 is correct with respect to the
specification Σ2 iff the input-output map fΣ1◦Σ2

, which corresponds to the FP
Σ1 ◦Σ2 (i.e. fΣ1◦Σ2 is a composition of the input-output maps corresponded to
Σ1 and Σ2) has an output value 1 on all its input values. We reduce the problem
of a proving the statement fΣ1◦Σ2

= 1 to the problem of an analysis of a state
diagram for the FP Σ1 ◦Σ2.

The proposed method of verification of FPs is illustrated by an example of
verification of a sorting FP. At first, we present a complete proof of correctness of
this FP by structural induction. This is done for a comparison of the complexity
of a manual verification of the FP on the base of the structural induction method,
and the complexity of the proposed method of automatic verification of FPs.
At second, we present a correctness proof of the FP by the method based on
constructing its state diagram. The proof by the second method is significantly
shorter, and moreover, it can be generated automatically. This demonstrates the
benefits of the proposed method of verification of FPs in comparison with the
manual verification based on the structural induction method.

2 Main concepts

2.1 Terms

We assume that there are given sets

– D of values, which is the union DC ∪ DS, where
• elements of DC are called symbols, and
• elements of DS are called symbolic strings (or briefly strings), and

each string from DS is a finite (maybe empty) sequence of elements of
DC,

– X of data variables (or briefly variables)
– C of constants,
– F of functional symbols (FSs), and
– Φ of functional variables

where each element m of any of the above sets is associated with a type desig-
nated by the notation type(m), and

– if m ∈ D ∪ X ∪ C, then type(m) ∈ {C,S},
– if m ∈ F ∪Φ, then type(m) is a notation of the form t1× . . .× tn → t, where
t1, . . . , tn, t ∈ {C,S}.

If d ∈ DC, then type(d) = C, and if d ∈ DS, then type(d) = S.
Each constant c ∈ C corresponds to an element of Dtype(c), called a value of

this constant. The notation ε denotes a constant of the type S, whose value is
an empty string. We assume that ε is the only constant of the type S.
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Each FS f ∈ F corresponds to a partial function of the form Dt1×. . .×Dtn →
Dt, where

type(f) = t1 × . . .× tn → t.

This function is denoted by the same symbol f .
Below we list some of the FSs which belong to F . Beside each FS we point

out (with a colon) its type.

1. head : S → C. The function head is defined for non-empty string, it maps
each non-empty string to its first element.

2. tail : S→ S. The function tail is defined for non-empty string, it maps each
non-empty string u to a string (called a tail of u) derived from u by removal
of its first element.

3. conc : C × S → S. For each pair (a, u) ∈ DC × DS the string conc(a, u) is
obtained from u by adding the symbol a before.

4. empty : S → C. Function empty maps empty string to the symbol 1, and
each non-empty string to the symbol 0.

5. =: C×C→ C. The value of the function = on the pair (u, v) is equal to 1
if u = v, and 0 otherwise.

6. ≤: C ×C → C. We assume that DC is linearly ordered set, and the value
of the function ≤ on the pair (u, v) is equal to 1 if u ≤ v, and 0 otherwise.

7. Boolean FSs: ¬ : C→ C, ∧ : C×C→ C, etc., corresponding functions are
standard boolean functions on the arguments 0 and 1 (i.e. ¬(1) = 0,, etc.)
and are not defined on other arguments.

8. if then else : C× t× t→ t, where t = C or S (i.e. the notation if then else
denotes two FSs), and functions corresponding to both FSs are defined by
the same way:

if then else (a, u, v)
def
=

{
u, if a = 1
v, otherwise.

A concept of a term is defined inductively. Each term e is associated with a
certain type type(e) ∈ {C,S}. Each data variable and each constant is a term,
a type of which is the same as the type of this variable or constant. If e1, . . . , en
is a list of terms and g is a FS or a functional variable such that

type(g) = type(e1)× . . .× type(en)→ t

then the notation g(e1, . . . , en) is a term of the type t.
We shall denote terms

head(e), tail(e), conc(e1, e2), empty(e),
= (e1, e2), ≤ (e1, e2), if then else (e1, e2, e3)

in the form

eh, et, e1e2, [[e = ε]], [[e1 = e2]], [[e1 ≤ e2]], [[e1]] e2 : e3

respectively. Terms containing boolean FSs will be denoted as in mathematical
texts (i.e. in the form e1 ∧ e2, etc.). Terms of the form e1 ∧ . . . ∧ en can also be
denoted as [[e1, . . . , en]].
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2.2 A concept of a functional program over strings

A functional program over strings (referred below as a functional pro-
gram (FP)) is a set Σ of functional equations of the form




ϕ1(x11, . . . , x1n1

) = e1
. . .
ϕm(xm1, . . . , xmnm) = em

(1)

where ϕ1, . . . , ϕm are distinct functional variables, and for each i =
1, . . . ,m ϕi(xi1, . . . , xini

) and ei are terms of the same type, such that

Xei = {xi1, . . . , xini
}, Φei ⊆ {ϕ1, . . . , ϕm}

(where Xe and Φe are sets of all data variables and functional variables respec-
tively occurred in the term e). We shall use the notation ΦΣ for the set of all
functional variables occurred in Σ.

FP (1) specifies a list
(fϕ1

, . . . , fϕm
) (2)

of functions corresponding to the functional variables from ΦΣ , which is the
least (in the sense of an order on lists of partial functions, described in [10])
solution of (1) (this list is called a least fixed point (LFP) of the FP (1),
all details related to the concept of a LFP can be found in chapter 5 of the
book [10]). Values of these functions can be calculated by a standard recursion.
We assume that for each FP under consideration all components of its LFP are
total functions. First function in the list (2) (i.e. fϕ1

) is denoted by fΣ , and is
called a function corresponding to Σ. If Σ has the form (1), then type(Σ)
denotes the type type(e1).

3 Example of specification and verification of a FP

3.1 Example of a FP

Consider the following FP:

sort(x) = [[x = ε]] ε : insert(xh, sort(xt))
insert(a, y) = [[y = ε]] aε

: [[a ≤ yh]] ay
: yh insert(a, yt)

(3)

This FP defines a function of string sorting. The FP consists of two equations,
which define the following functions:

– sort : S→ S is a main function, and
– insert : C×S→ S is an auxiliary function, which maps a pair (a, y) ∈ C×S

to the string derived by an insertion of the symbol a to the string y, with
the following property: if the string y is ordered, then the string insert(a, y)
also is ordered.
(we say that a string is ordered, if its components form a nondecreasing
sequence).
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3.2 Example of a specification of a FP

One of correctness properties of FP (3) it the following: ∀x ∈ S the string
sort(x) is ordered. This property can be described formally as follows. Consider
a FP defining a function ord of string ordering checking:

ord(x) = [[x = ε]] 1
: [[xt = ε]] 1

: [[xh ≤ (xt)h]] ord(xt) : 0
(4)

The function ord allows to describe the above property of correctness as the
following mathematical statement:

∀x ∈ S ord(sort(x)) = 1 (5)

3.3 Example of a verification of a FP

The problem of verification of the correctness property of FP (3) consists of a
formal proof of (5). This proposition can be proved like an ordinary mathematical
theorem, for example using the method of mathematical induction. For example,
a proof of this proposition can be the following.

If x = ε, then, according to first equation of system (3), the equality sort(x) =
ε holds, and therefore

ord(sort(x)) = ord(ε) = 1.

Let x 6= ε. We prove (5) for this case by induction. Assume that for each
string y, which is shorter than x, the equality

ord(sort(y)) = 1

holds. Prove that this implies the equality

ord(sort(x)) = 1. (6)

(6) is equivalent to the equality

ord( insert(xh, sort(xt))) = 1 (7)

By the induction hypothesis, the equality

ord(sort(xt)) = 1

holds, and this implies (7) on the reason of the following lemma.

Lemma.
The following implication holds:

ord(y) = 1 ⇒ ord(insert(a, y)) = 1 (8)
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Proof.
We prove the lemma by induction on the length of y.
If y = ε, then the right side of(8) has the form

ord(aε) = 1

which is true by definition ord.
Let y 6= ε, and for each string z, which is shorter than y, the following

implication holds:

ord(z) = 1 ⇒ ord(insert(a, z)) = 1 (9)

Let c
def
= yh, d

def
= yt.

(8) has the form

ord(cd) = 1 ⇒ ord(insert(a, cd)) = 1 (10)

To prove the implication (10) it is necessary to prove that if ord(cd) = 1,
then the following implications hold:

(a) a ≤ c ⇒ ord(a(cd)) = 1,
(b) c < a ⇒ ord(c insert(a, d)) = 1.

(a) holds because a ≤ c implies

ord(a(cd)) = ord(cd) = 1.

Let us prove (b).

– d = ε. In this case, right side of (b) has the form

ord(c(aε)) = 1 (11)

(11) follows from c < a.

– d 6= ε. Let p
def
= dh, q

def
= dt.

In this case, it is necessary to prove that if c < a, then

ord(c insert(a, pq)) = 1 (12)

1. if a ≤ p, then (12) has the form

ord(c(a(pq))) = 1 (13)

Since c < a ≤ p, then (13) follows from the equalities

ord(c(a(pq))) = ord(a(pq)) = ord(pq) =
= ord(c(pq)) = ord(cd) = 1
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2. if p < a, then (12) has the form

ord(c(p insert(a, q))) = 1 (14)

Since, by assumption,

ord(cd) = ord(c(pq)) = 1

then c ≤ p, and therefore (14) can be rewritten as

ord(p insert(a, q)) = 1 (15)

If p < a, then

insert(a, d) = insert(a, pq) = p insert(a, q)

therefore (15) can be rewritten as

ord(insert(a, d)) = 1 (16)

(16) follows by the induction hypothesis for the Lemma (i.e., from the

implication (9), where z
def
= d) from the equality

ord(d) = 1

which is justified by the chain of equalities

1 = ord(cd) = ord(c(pq)) = (since c ≤ p)
= ord(pq) = ord(d).

From the above example we can see that even for the simplest FP, which
consists of several lines, a proof of its correctness is not trivial mathematical
reasoning, it is difficult to check it and much more difficult to construct it.

Below we present a radically different method for verification of FPs based
on a construction of state diagrams for FPs, and illustrate it by a proof of (5)
on the base of this method. This proof can be generated automatically, that is
an evidence of advantages of the method for verification of FPs based on state
diagrams.

4 State diagrams of functional programs

4.1 Concepts and notations related to terms

The following notations and concepts will be used below.

– E is a set of all terms.
– E0 is a set of all terms not containing functional variables.
– Econc is a set of terms e ∈ E0, such that each FS occurring in e is conc.
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– If Σ is a FP, then EΣ is a set of terms, each of which is either a variable or
has the form ϕ(u1, . . . , un), where ϕ ∈ ΦΣ and u1, . . . , un ∈ Econc.

– If e ∈ E , x1, . . . , xn is a list of the different variables, and e1, . . . , en are terms
such that ∀ i = 1, . . . , n type(ei) = type(xi), then the notation

e(e1/x1, . . . , en/xn) (17)

denotes a term derived from e by replacement ∀ i ∈ {1, . . . , n} of all occur-
rences of xi in e with the term ei.

– If e and e′ are terms, then for each term e′′, such that type(e′′) = type(e′),
the notation e(e′′/e′) denotes a term derived from e by a replacement of all
occurrences of e′ in e with the term e′′.

– An assignment is a notation of the form

u := e (18)

where u ∈ Econc, e ∈ EΣ , type(u) = type(e).
– If X ⊆ X , then an evaluation of variables occurring in X is a function ξ,

which maps each variable x ∈ X to a value xξ ∈ Dtype(x). The set of all
evaluations of variables occurring in X will be denoted by X•.

– For each e ∈ E0, each X ⊇ Xe and each ξ ∈ X• the notation eξ denotes an
object called a value of e on ξ and defined by a standard way (i.e. if e ∈ C,
then eξ is equal to the value of the constant e, if e ∈ X , then eξ is equal to
the value of the evaluation ξ on the variable e, and if e = f(e1, . . . , en), then

eξ = f(eξ1, . . . , e
ξ
n)).

– We shall consider terms e1, e2 ∈ E0 as equal iff for each ξ ∈ (Xe1 ∪Xe2)• the

equality eξ1 = eξ2 holds. We understand this equality in the following sense:

values eξ1 and eξ2 either both undefined, or both defined and coincide.
– A term e ∈ E0 is called a formula, if all variables from Xe are of the type

C, and ∀ ξ ∈ X•e eξ ∈ {0, 1}. The symbol B denotes the set of all formulas.
The symbols > and ⊥ denote formulas taking the values 1 and 0 respectively
on each evaluation of their variables.

4.2 A concept of a state of a FP

Let Σ be a FP.
A state of Σ is a notation s of the form

[[b]]u (θ1, . . . , θm) (19)

components of which are the following:

– b is a formula from B, called a condition of s,
– u is a term from Econc, called a term related to s, and
– θ1, . . . , θm are assignments.

We shall use the following notations.
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– SΣ is the set of all states of Σ.
– If a state s ∈ SΣ is of the form (19), then we shall denote by bs, us, Θs

and type(s) a formula b, a term u, a sequence of assignments (which can be
empty) in (19), and a type type(u), respectively.
If bs = >, then the formula b in (19) will be omitted.

– If s ∈ SΣ , then

• Xs is a set of all data variables occurring in s,
• each variable from Xs, occurring in the left side of an assignment from
Θs, is called an internal variable of s, all other variables from Xs are
called input variables of s,
• s• is a set of all ξ ∈ X•s , such that bξs = 1, and ∀ (ui := ei) ∈ Θs
∗ if ei ∈ Econc, then uξi = eξi , and
∗ if ei = ϕ(v1, . . . , vn), then

uξi = fϕ(vξ1, . . . , v
ξ
n),

where fϕ is a corresponding component of a LFP of Σ.

A state s ∈ SΣ is said to be terminal, if Θs does not contain functional
variables.

Given a pair of states s1, s2 ∈ SΣ . We denote by the notation s1 ⊆ s2 the
following statement: sets of input variables s1 and s2 are equal, and

∀ ξ1 ∈ s•1 ∃ ξ2 ∈ s•2 : uξ1s1 = uξ2s2 .

Along with the states of FPs, we shall consider also pseudo-states, which
differ from states only that their assignments have the form u := e, where u ∈
Econc, e ∈ E . For each pseudo-state s the notations bs, us and Θs have the same
meaning as for states.

4.3 Unfoldinig of states

Let Σ be a FP, s ∈ SΣ be a state, θ ∈ Θs be an assignment of the form

u := ϕ(v1, . . . , vn)

and an equation in Σ that corresponds to ϕ has the form ϕ(x1, . . . , xn) = eϕ.
Denote by sθ a set, called an unfolding of the state s with respect to θ, and

defined by the procedure of its construction, which consists of the steps listed
below.

Step 1.
sθ is assumed to be a singleton, which consists of a pseudo-state, derived
from s by a replacement of θ with the assignment

u := eϕ(v1/x1, . . . , vn/xn).



148 Andrew Mironov

Step 2.
(This step can be performed several times until there is the possibility to
perform it.)
If all the elements of the set sθ are states from SΣ , then the performance of
this step ends, otherwise sθ is modified in the following way.
We choose an arbitrary element s′ ∈ sθ, which is not a state of SΣ , and
denote by θ′ the first of the assignments, occurring in Θs′ , which has the form
u := e, where e 6∈ EΣ . Consider all possible variants of the form of the term
e, and for each of these variants, we present a rule of a modification of the set
sθ, according to this variant. Below, the phrase “a new variable” means “a
variable that has no occurrences in the pseudo-state under consideration”.

– e ∈ C, in this case
• if u = e, then remove θ′ from s′,
• if u ∈ X , then replace all occurrences of u in s′ on e, and remove θ′

from s′,
• otherwise remove s′ from sθ.

– e = e′h, in this case replace θ′ on the assignment
• u := e1, if e′ has the form e1e2,
• ux := e′, where x is a new variable, otherwise.

– e = e′t, in this case replace θ′ on the assignment
• u := e2, if e′ has the form e1e2,
• xu := e′, where x is a new variable, otherwise.

– e = e1e2, in this case
• if u = u1u2, then replace θ′ on a couple of assignments u1 := e1,
u2 := e2,

• if u ∈ X , then replace all occurrences of u in s′ on the term xy (where
x and y are new variables), and θ′ on the couple of assignments
x := e1, y := e2,

• otherwise remove s′ from sθ.
– e = [[e1 = ε]], in this case
• add to sθ a copy of the state s′ (denote it by s′′),
• replace
∗ θ′ in s′ on the couple u := 1, ε := e1, and
∗ θ′ in s′′ on the couple u := 0, xy := e1, where x and y are new

variables.
– e = [[e1 = e2]], e = [[e1 ≤ e2]], e = [[e1 ∧ e2]] etc., in this case
• replace θ′ on the couple x1 := e1, x2 := e2, where x1, x2 are new

variables, and
• add to bs′ the conjunctive member u = e′, where e′ is derived from
e by a replacement of ei with xi (i = 1, 2).

– e = [[e1]] e2 : e3, in this case add to sθ a copy of s′ (denote it by s′′), and
replace all occurrences
• θ′ in s′ on the couple 1 := e1, u := e2,
• θ′ in s′′ on the couple 0 := e1, u := e3.

– e = ϕ(e1, . . . , ek), ∃ i : ei 6∈ Econc, in this case, replace ei in θ′ on the new
variable x, and add x := ei before θ′.
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Step 3.
For each s′ ∈ sθ
– if Θs′ has a pair of the form u := x, v := x, where x ∈ X , and u, v

are of the form u1 . . . un, v1 . . . vm respectively, then there is executed an
algorithm which consists of the following steps:
(as a result of each of the these steps it is changed a form of these
assignments, but we will denote the changed assignments by the same
notation as original assignments):

• if n < m, then in the case un ∈ X each occurrence of the variable
un in s′ is replaced on the term vn . . . vm, and in the case un = ε we
remove s′ from sθ,

• analogously in the case m < n,
• ∀ i = 1, . . . , n:
∗ if ui ∈ X , then replace all occurrences ui in s′ on vi, and if
ui 6∈ X , but vi ∈ X , then replace all occurrences vi in s′ on ui,
∗ if ui 6= vi, then remove s′ from sθ,

• delete one of the considered assignments,

– if bs′ = [[b′, x = u]], where x ∈ X , u ∈ X ∪ C, then bs′ is replaced on b′,
and all occurrences x in s′ are replaced on u,

– bs′ is simplified by
• a replacement of subterms without variables with corresponding con-

stants, and
• simplifying transformations related to boolean identities and prop-

erties of equality and linear order relations,
– if bs′ = ⊥, then s′ is removed from sθ.

Theorem 1.
The above procedure for constructing of the set Sθ is always terminated.

A state s ∈ SΣ is inconsistent, if it is not terminal, and ∃ θ ∈ Θs: either
sθ = ∅, or all states in sθ are inconsistent.

4.4 Substitution of states in terms

Let Σ be a FP, e be a term, x1, . . . , xn be a list of different variables from X ,
and s1, . . . , sn be a list of states from SΣ , such that ∀ i = 1, . . . , n type(si) =
type(xi). The notation

e(s1/x1, . . . , sn/xn) (20)

denotes a state se ∈ SΣ , defined by induction on the structure of e:

– if e = xi ∈ {x1, . . . , xn}, then se
def
= si,

– if e ∈ X \ {x1, . . . , xn} or e ∈ C, then se
def
= e ( ),

– if e = g(e1, . . . , ek), where g ∈ F ∪ Φ, and the states se1 , . . . , sek of the form
(20), which are corresponded to terms e1, . . . , ek, are already defined, then
se is defined as follows:
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• internal variables of the states sei are replaced on new variables by a
standard way, so that all the internal variables of these states will be
different, let [[bi]]ui(Θi) (i = 1, . . . , k), be the resulting states,
• se is a result of an application of actions 2 and 3 from section (4.3) to

the state
[[b1, . . . , bk]] (u1, . . . , uk) (Θ1, . . . , Θk).

Term (20) will be denoted by the notation e(s1, . . . , sn), in that case, when
the list of the variables x1, . . . , xn is clear from the context.

4.5 A concept of a state diagram of a FP

Let Σ be a FP, and left side of first equation in Σ has the form ϕ(x1, . . . , xn).
A state diagram (SD) of the FP Σ is a graph G with distinguished node

n0 (called an initial node) satisfying the following conditions.

– Each node n of the graph G is labelled by a state sn ∈ SΣ , and sn0
has the

form
y (y := ϕ(x1, . . . , xn)), where y 6∈ {x1, . . . , xn}.

– For each node n of the graph G one of the following statements holds.
1. There is no an edge outgoing from n, and sn is terminal.
2. There are two edges outgoing from n, and states s′, s′′ corresponding

to the ends of these edges have the following property: ∃x ∈ Xsn :
type(x) = S, there are no assignments of the form u := x in Θsn , and
s′, s′′ are obtained from sn by
• a replacement of all occurrences of x with the constant ε and with

the term yz respectively (where y and z are variables not occurring
in Xsn), and

• if x is not occurring in the left side of any assignment from Θsn ,
then – by adding assignments ε := x and yz := x to Θs′ and Θs′′

respectively.
3. ∃ θ ∈ Θsn : a set of states corresponding to ends of edges outgoing from
n, is equal to the set of all consistent states from sθn.

4. usn has the form u1u2, and there is one edge outgoing from n labeled by
tail, and the end n′ of this edge satisfies the condition: tail(sn) ⊆ sn′ .

5. There is an edge outgoing from n labelled by <, the end n′ of which
satisfies the condition:
• ∃n1, n2: G contains an edge from n1 to n2 labelled by tail, and
• ∃ e ∈ EΣ , ∃x ∈ Xe :

sn ⊆ e(tail(s1)/x), e(s2/x) ⊆ sn′ .

We describe an informal sense of the concept of a SD. Each state s can be
considered as a description of a process of a calculation of the value of the term us
on concrete values of input variables of this state (by an execution of assignments
from Θs, checking the condition bs and a calculation of the value of the term
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us on the calculated values of the variables occurring in this term). If all edges
outgoing from the state n are unlabeled, then ends of these edges correspond to
possible options for calculating the value of usn (by detailization of a structure
of a value of some variable from Xsn , or by an equivalent transformation of any
assignment from Θsn). If there is an edge from n to n′ labeled by tail, then this
edge expresses a reduction of the problem of calculating of the tail of the value
usn to the problem of calculating the value of usn′ . If there is an edge from n to n′

labeled by <, then this edge expresses a reduction of the problem of calculating
the value usn to the problem of calculating the value usn′ on arguments on the
smaller size.

We say that FP Σ has a finite SD, if there is a SD of Σ with finite set of
nodes.

Theorem 2.
Let Σ1 and Σ2 have finite SDs, ΦΣ1

∩ΦΣ2
= ∅, and left sides of first equations

in Σ1 and Σ2 have the form ϕ1(x1, . . . , xn) and ϕ2(y1, . . . , ym) respectively,
where type(Σ1) = type(y1).

Then FP Σ such that

– its first equation has the form

ϕ(x1, . . . , xn, y2, . . . , ym) =
= ϕ2(ϕ1(x1, . . . , xn), y2, . . . , ym)

– and a set of other equations is Σ1 ∪Σ2

has a finite SD.

We do not give a description of the algorithm for the construction of a finite
SD for Σ due to limitations on the size of the article. We note only that the SD
is a union of a SD for Σ1, a SD for Σ2, and a SD, which is a Cartesian product
of two previous SDs.

Theorem 3.
Let FP Σ has a finite SD, where terms, related to states corresponding to

terminal nodes of this SD, which are reachable from an initial state, are equal
to 1. Then fΣ has value 1 on all its arguments.

The above theorems are theoretical foundation of a method of verification of
FPs. This method consists in a constructing finite SDs

– for a FP Σ1 under verification, and
– for a FP Σ2 which represents some property of Σ1.

If there are finite SDs for Σ1 and Σ2, then, according to Theorem 2, there is a
finite SD for a superposition of Σ1 and Σ2. If this SD has the property indicated
in Theorem 3, then the superposition of functions corresponding to Σ1 and Σ2,
has the value 1 on all its arguments.
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In the next section we present an example of this method.
For a constructing of SDs it is used a method of justification of statements

of the form s1 ⊆ s2, which we did not set out here due to limitations on the size
of the article. We only note that this method uses the concept of an unification
of terms.

We shall use the following convention for graphical presentation of SDs: if a
state s associated with a node of a SD has the form [[b]]u(θ1, . . . , θn), then this
node is designated by an oval, over which it is drawn a notation b.u (or u, if
b = >), and components of the list Θs are depicted inside the oval. An identifier
of the node can be depicted from the left of the oval.

5 An example of verification of a FP by constructing of a
state diagram

In this section we illustrate the verification method outlined above by an example
of verification of FP of sorting, in this case Σ1 = (3) and Σ2 = (4).

We shall use the following convention: if nodes n1 and n2 of a SD are such
that n2 can be derived from n1 by a performing of actions 2 and 3 from the
definition of a SD, then we draw an unlabeled edge from n1 to n2 (i.e. unlabeled
edges in a new understanding of a SD correspond to paths consisting of unlabeled
edges in original understanding of a SD).

5.1 A state diagram for the FP of sorting

In this section we describe the process of building of a SD for FP (3). Terms of
the form insert(a, y) we denote by a→ y.

An initial node of the SD for FP (3) (this node will be denoted by the symbol
A) has the form

y�� ��
�
�

�
�y := sort(x)

A

Two unlabeled edges can be drawn (corresponding to replacement of x with
ε and with ab, and to an unfolding of one assignment) from this node to the
nodes �

�
�
�

�
�
�
�ε := x

ε
B

'
&

$
%

y := a→ u
u := sort(b)
ab := x

y

D

Also it is possible to draw two unlabeled edges (corresponding to replacement
of the variable u with constant ε and with the term cd) from D to nodes with
labels

y (y := a→ cd, cd := sort(b), ab := x), (21)

and
y (y := aε, ε := sort(b), ab := x). (22)
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Also it is possible to draw two edges from the node labeled by (21) to nodes
labeled by

C : [[a ≤ c]] acd (cd := sort(b), ab := x),
G : [[c < a]] cz (z := a→ d, cd := sort(b), ab := x)

(by an unfolding of the first assignment).
It is possible to draw an edge labeled by tail from C to the initial node (the

existence of such an edge is seen directly).
It is possible to draw two edges from the node labeled by (22) (replacing b

to ε and to pq) to nodes, one of which is terminal and has the form

E : aε (aε := x),

and the second node is inconsistent (that can be determined by additional un-
foldings, which we do not present here).

It is possible to draw two unlabeled edges from G (corresponding to the
replacement of b with ε and with pq) to nodes, one of which is inconsistent, and
the second node is labeled by

[[c < a]] cz




z := a→ d,
cd := p→ w,
w := sort(q),
apq := x


 . (23)

It is possible to draw two unlabeled edges from (23) (corresponding to the re-
placement of w with ε and ij):

– from the end of the first of these edges it can be drawn several unlabeled
edges, but among ends of all these edges there is a unique consistent node
labeled by

[[c < a]] cz




z := a→ ε,
c := p,
d := ε,
apε := x


 ,

and there is a unique unlabeled edge from this node to a terminal node

H : [[c < a]] caε (acε := x),

– the end of second edge has a label

[[c < a]] cz




z := a→ d,
cd := p→ ij,
ij := sort(q),
apq := x


 . (24)

It can be drawn a couple of edges from (24), the ends of which have labels

F : [[c < a, c ≤ i]] cz



z := a→ ij,
ij := sort(q),
acq := x


 ,
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I : [[c < a, c < p]] cz




z := a→ d,
d := p→ j,
cj := sort(q),
apq := x


 .

It can be drawn an edge labeled by tail from F to the initial node (the
existence of such an edge is seen directly).

A pair of nodes (D, I) is related to the pair of nodes (A,G) by the following
relations:

tail(I) = e(tail(G)/h), D = e(A/h) (25)

where e = a → h. In other words, labels of nodes I,D can be obtained from
labels of nodes G,A by adding an assignment to the top. This fact can be used
to justify an existence of an edge from G to A with label tail. We do not set
out the detailed justification of an existence of such an edge, we describe only a
scheme of such a justification. Let ρ(x) be a partial function with the following
property: if ρ is defined on a value α of the variable x, then it maps α to a string
β, which has the property

ux 7→αtail(G) = ux 7→βA .

The formula (25) directly implies the following property of the function ρ:

x 6= ε ⇒ ρ(x) w xhρ(xt) (26)

where the inequality w is understood as an order relation on the set of partial
functions: if for some value of the variable x the right side of (26) is defined,
then the left side also is defined for this value of x, and values of both parts are
the same.

A property of totality of the function ρ is justified by the inequality (26)
and by an analysis of a fragment of SD for (3) which is already built. Note that
this justification can be generated automatically. A proof of correctness of this
justification is based on the concept of unification of state pairs, it has a large
volume, and we omit it.

The constructed SD for FP (3) is shown in Fig. 1. it can be simplified to the
SD in Fig. 2 (we do not present here the detailed algorithm of this simplification).

5.2 A state diagram for the FP of cheking of string ordering

A fragment of a SD for FP Σ2 (see (4)) (consisting of nodes reachable from the
initial state) has the form
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a b

c d

e f g

s�
�

�
�

�� ��s := ord(y)

s�
�

�
�s := ord(cz)

cz := y

1�� ��ε := y

1�� ��cε := y

s'
&

$
%

s := ord(cvw)
cvw := y

�� ��cvw := y

'
&

$
%

s := ord(vw)
cvw := y

?

?

�

[[c ≤ v]] s

-

[[v < c]] 0

-

--

<

5.3 A state diagram for a superposition of the sorting FP and the
FP of ordering checking

There is an algorithm based on Theorem 3, which can be applied to SDs for the
FPs (3) and (4), which results the SD shown in Fig. 3. This SD has two terminal
nodes, and labels of both these nodes have a value of 1. According to Theorem
3, this implies that the function ord ◦ sort has the value 1 on all its arguments.

In conclusion we note, that despite on the complexity of all of the above
transformations and reasonings, all of them can be generated automatically. An
attempt to justify an existence of edges with labels tail and < can be executed
automatically for each pair of nodes arising in the process of building of the SD.
It can be seen from this example that the process of a construction of a SD is
terminated fast enough.

6 Conclusion

We have proposed the concept of a state diagram (SD) for functional programs
(FPs) and a verification method based on the concept of a SD. One of the
problems for further research related to the concept of a SD has the following
form: find a sufficient condition ϕ (as strong as possible) on a FP Σ such that
if Σ meets ϕ then Σ has a finite SD.
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Complexity of Turchin’s Relation for
Call-by-Name Computations

(Extended Abstract)

Antonina Nepeivoda
a nevod@mail.ru

Program Systems Institute of Russian Academy of Sciences?
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Abstract. Supercompilation is a program transformation technique first
described by V.F. Turchin in the 1970s. In supercompilation, Turchin’s
relation on call-stack configurations is used both for call-by-value and
call-by-name semantics as a whistle. We give a formal grammar model of
call-by-name stack behaviour and find the worst-case number of driving
steps before the whistle using Turchin’s relation is blown.

1 Introduction

Supercompilation is a program transformation method based on fold/unfold op-
erations [2, 12, 14]. Given a program and its parametrized input configuration,
a supercompiler partially unfolds the process tree of the program on the input
configuration. Then it tries to fold the tree back into a graph, which presents
the residual program. In general case, the process tree may be infinite. Thus, the
following question appears: when is it reasonable to stop the unfolding in order
to avoid going into an infinite loop?

One of the ways to solve this problem is based on “configuration similarity”
relations. If a path in the tree contains two configurations, the latter of which
resembles the former, that may be a sign that the path represents an unfolded
loop. Thus, when a supercompiler finds two such configurations, it terminates
unfolding of the path where they appear.

We recall an important relation property used for termination [5].

Definition 1 Given a set T of terms and a set S of sequences of the terms from
T , relation R ⊂ T × T is called a well binary relation with respect to set S, if
every sequence {Φn} ∈ S such that ∀i, j(i < j ⇒ (Φi, Φj) /∈ R) is finite.

A sequence {Φn} satisfying the property ∀i, j(i < j ⇒ (Φi, Φj) /∈ R) is called
a bad sequence with respect to R.

? The reported study was partially supported by RFBR, research project No. 14-
07-00133, and Russian Academy of Sciences, research project No. AAAA-A16-
116021760039-0.
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So, a well binary relation is “a well quasi-order without the order” (i. e., it is
not necessarily transitive).

Any relation guaranteeing termination of the unfolding of a process tree must
be a well binary relation with respect to the set of the traces generated in the
tree. The relation most widely used for this aim, the homeomorphic embedding
[1,5,10], is well binary with respect to arbitrary term sequences [4]. Some other
relations used for termination in program transformations1 are not well binary
with respect to arbitrary term sequences. However, they are well binary with
respect to the term sequences that can be generated on any computation path.
In order to study termination properties of such relations, one must consider
them together with their domain. Hence, the usual way of reasoning about the
well-binariness of a relation as in [6]2 meets a couple of problems.

For Turchin’s relation, well-binariness of which also can be proved only with
respect to computation paths that appear during unfolding. That relation on
call-stack configurations was the first well binary relation used for trace termi-
nation [14] (1986). Although Turchin’s relation is a useful tool that helps to
solve both termination and generalization problems [16], the proof of its well-
binariness given by V. Turchin in [16] was presented in a semi-formal way. This
work presents a formal approach to the theorem for computations in the call-
by-name semantics. We introduce a notion of a multi-layer prefix grammar3.
Elements of traces generated by such a grammar are models of call-stack con-
figurations on computation paths in the call-by-name semantics. Based on the
formalization, we could give a constructible proof of Turchin’s theorem for the
grammars being introduced. The constructible proof allowed us to find the upper
bound on the bad sequence length with respect to Turchin’s relation. The upper
bound is Ackermanian.

In Section 2, we give an example showing how Turchin’s relation can be
efficiently used as a whistle. In Section 3 we give the formal definition for a class
of grammars that model call stack behaviour for call-by-name computations. In
Section 4 we very briefly show how such grammars can be used for modelling
the call stack behaviour of programs in a simple functional language. Finally, in
Section 5 we refine the definition of Turchin’s relation for the new class of the
grammars and state the result on the upper bound.

2 Turchin’s Relation: an Example

The following program computes the sum of the squares starting from n down
to 1 in a straightforward way.

1 Among them is the relation used in supercompiler SCP4 [7] and the relation used in
higher-order supercompiler HOSC [3].

2 Including the “minimal bad sequence” method or methods using infinite Ramsey
theorem.

3 A precise description of the multi-layer grammars and their connection to call-stack
configurations will be published in [9].
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Example 1

A program computing
∑n

k=1 k
2

Start: s(x);

s(0) = 0;
s(x+ 1) = a(m(x+ 1, x+ 1), s(x));

a(0, y) = y;
a(x+ 1, y) = a(x, y) + 1;

m(0, y) = 0;
m(x+ 1, y) = a(y,m(x, y));

When using a “core” homeomorphic embedding whistle, a supercompiler gen-
erates the residual program which repeats the initial program modulo renaming.

The program generated by a supercompiler which uses the composition of
Turchin’s relation and homeomorphic embedding as a whistle, is below.

Example 2

Residual program computing
∑n

k=1 k
2

when Turchin’s relation is used

Start: f(x, x, x);

f(0, 0, 0) = 0;
f(0, 0, x+ 1) = f(x, x, x) + 1;
f(0, x+ 1, y) = f(y, x, y) + 1;
f(x+ 1, y, z) = f(x, y, z) + 1;

The program given in Example 2 is more efficient than the initial one given
in Example 1: on every step except the very last it adds 1 to the result, thus
avoiding “zero” steps such as m(0, y) = 0; or a(0, y) = y;. What properties of
the refined whistle made this result possible?

The part of the process tree of the program in Example 1 is shown in Figure 1.
When we use the homeomorphic embedding relation as a whistle when driving
the initial configuration s(x) to s(x1 + 1), the whistle is blown immediately
after the substitution of the narrowing x → x + 1 to the right-hand side of the
definition s(x+ 1) = a(m(x+ 1, x+ 1), s(x)) because the subterm s(x1) repeats
the initial configuration modulo the variables’ names.

After the generalization to let z = s(x1) in a(m(x1 + 1, x1 + 1), z), the
process tree of the program is unfolded until the narrowing x1 → x2 + 1 is done.
Then the term a(a(x2,m(x2 + 1, x2 + 2)) + 1, z) + 1, which is the result of the
substitution of the narrowing in the term a(a(x1,m(x1, x1 + 1)), z) + 1, embeds
the parent term or its ancestor a(m(x1+1, x1+1), z) (depending on the strategy
of a supercompiler). The msg for both the pairs is a(u, z). That is the cause why
the residual program coincides with the one given in Example 1.

As opposed to the homeomorphic embedding relation, Turchin’s relation con-
siders only flat call-stack structure, ignoring all the passive data. In Figure 1,
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0

Term: s(x)

Full stack: out := s (x)

Stack as a word: s

x=0oo

x=x1+1��
Term: a(m(x1 + 1, x1 + 1), s(x1))

Full stack: z0 := m (x1 + 1, x1 + 1)

out := a (z0, s(x1))

Stack as a word: ma

��
Term: a(a(x1 + 1,m(x1, x1 + 1)), s(x1))

Full stack: z1 := a (x1 + 1,m(x1, x1 + 1)),

out := a (z1, s(x1))

Stack as a word: aa

��
Term: a(a(x1,m(x1, x1 + 1)) + 1,

s(x1))

Full stack: out := a (a(x1,m(x1, x1 + 1)) + 1,

s(x1))
Stack as a word: a

��

a(m(0, 1), s(0)) + 1

Term: a(a(x1,m(x1, x1 + 1)),
s(x1)) + 1

Full stack: z2 := a (x1,m(x1, x1 + 1)),

out := a (z2, s(x1))

Stack as a word: aa

x1=0oo

x1=x2+1
��

Term: a(a(x2,m(x2 + 1, x2 + 1 + 1)) + 1,
s(x2 + 1)) + 1

Full stack: out := a (a(x2,m(x2 + 1, x2 + 1 + 1)) + 1,

s(x2 + 1))
Stack as a word: a

Fig. 1. A fragment of the process tree for the program of Example 1

the call-stack configurations are presented in the two forms: the full form that
is constructed while interpreting the configuration, and the “word” form which
contains only the names of the functions in the call-stack. Turchin’s relation op-
erates with the “word” forms. Namely, it checks whether the two “word forms”
of the call stacks ∆1 and ∆2 on the path can be split into parts [Top], [Middle],
and [Context ] such that ∆1 = [Top][Context ], ∆2 = [Top][Middle][Context ] and
the part [Context ] is never changed on the path segment starting at ∆1 and
ending at ∆2 (as it is shown in Figure 2).

Looking back to Figure 1, we can see that the first two configurations satisfy-
ing Turchin’s relation are a(a(x1+1,m(x1, x1+1)), s(x1)) and a(a(x1,m(x1, x1+
1)), s(x1))+1 (whose call-stacks in the “word form” look as aa). They are gener-
alized by the most-specific generalization to a(a(z,m(x1, x1 + 1)), s(x1)), which
is much more specific than a(u, z). We can notice that these two configurations
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Top Context

. . . . . . Context

Top Middle Context

Fig. 2. Turchin’s relation for call-stack configurations

do not satisfy the homeomorphic embedding relation, thus, when the composi-
tion of the relations is used as a whistle, another generalization is done. The
first terms satisfying the both relations are a(a(x1,m(x1, x1 + 1)) + 1, s(x1))
and a(a(x2,m(x2 + 1, x2 + 1 + 1)) + 1, s(x2 + 1)) + 1. They are generalized
to a(a(u,m(w,w + 1)) + 1, s(w)), which is also a good generalization with the
substitutions containing no function calls. Further generalizations, which we do
not discuss there, also allows a supercompiler to do driving on the whole term
synchronously.

The examples above show that the composition of the homeomorphic em-
bedding and Turchin’s relation may be a better whistle than the homeomorphic
embedding alone. On the one hand, they consider different properties of the
configurations, which allows a supercompiler to build more specific generaliza-
tions. On the other hand, they have much in common, hence it is not likely that
their composition will generate much longer bad sequences than the homeomor-
phic embedding alone. And even if they can sometimes generate very long bad
sequences, one can have a desire that these situations will not appear too often.

3 Multi-layer Prefix Grammars

Based on the observations given in Section 2, we use the following assumptions
to construct the grammar models for programs based on the call-by-name se-
mantics.

1. A configuration can be considered as a tree of calls, and the active call stack
— as a path in the tree. We use a set of labels S with partial order / for
denoting the positions of the function calls in the tree.

2. Every call in the stack is modelled by a pair < NAME, LABEL >, where
LABEL ∈ S.

3. Every configuration is represented as a word Γ$∆ consisting of the two parts
separated by the symbol $. The structure of the active stack is placed in Γ
and is linearly ordered w.r.t. labels, the function calls in the passive part of
the configuration are placed in ∆.

Let Υ be a finite alphabet. Let S be a label set and / be a strict (non-
reflexive) partial order relation over S. We denote the labels from S by the
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letters s, t (maybe with subscripts). Let us say that s1 is a child of s0 w.r.t.
S′ ⊆ S (denoted by s1 = child(s0)[S′]) if s0 / s1, s0 ∈ S′, s1 ∈ S′ and there is
no such s2 ∈ S′ that s0 / s2 and s2 / s1. The inverse for the child relation is the
parent relation. Given a set S′ ⊆ S and a label t ∈ S \ S′, we call t a fresh label
w.r.t. S′ if S′ contains neither descendants nor ancestors of label t4.

Henceforth, the set of finite sequences of pairs {〈a, si〉|a ∈ Υ & si ∈ S}∗
is denoted by LW(Υ,S). Elements of LW(Υ,S) are called layered words, and are
denoted by Greek capitals Γ , ∆, Φ, Ψ , Ξ, Θ. If 〈a1, s1〉 . . . 〈an, sn〉 is a layered
word, the corresponding plain word is defined as a1 . . . an.

If Φ is a layered word, |Φ| stands for the number of the pairs in Φ and Φ[i]
stands for the i-th pair. For the sake of brevity, layered word 〈a1, s0〉 . . . 〈an, s0〉
can be also written as 〈a1 . . . an, s0〉 (thus, a〈s0〉 is an equivalent form for 〈a, s0〉).

Expression Φ〈s0〉 denotes the maximal subsequence of Φ containing only the
pairs labelled with s0. The set of all labels in Φ is denoted by SΦ.

Given a label si and natural numbers K1 and K2, we define a set of layer
functions w.r.t. label si, FsiK1,K2

: LW(Υ,S) → LW(Υ,S), as a minimal set of
functions containing all compositions of K1 elementary functions, which are:

1. Append Appsj [Ψ ] (where sj ∈ S, Ψ ∈ Υ ∗): given a layered word Φ, the word
Appsj [Ψ ](Φ) is the word ΦΨ〈sj〉 such that sj is a child of si w.r.t. SΦ ∪{sj},
sj is fresh w.r.t. SΦ \ {si}, and |Ψ | ≤ K2.
For example, if Apps1 [g] ∈ Fs01,1 and s0 / s1, then

Apps1 [g](〈f, s0〉〈g, s1〉) = 〈f, s0〉〈g, s1〉〈g, s1〉

2. Insert Inssj [Ψ〈sk〉](where sj , sk ∈ S, Ψ ∈ Υ ∗): given Φ with a non-empty
Φ〈sj〉, where sj is a child of si w.r.t. SΦ, Inssj [Ψ〈sk〉](Φ) is the word ΦΨ〈sk〉
where |Ψ | ≤ K2 and sk is a child of si w.r.t. SΦ ∪ {sk}, sk is fresh w.r.t
SΦ \ {si} and sj is a child of sk w.r.t SΦ ∪ {sk}.
For example, if Inss1 [gf〈s2〉] ∈ Fs01,1

5 and s0 / s1, then

Inss1 [〈gf, s2〉](〈f, s0〉〈g, s1〉) = 〈f, s0〉〈g, s1〉〈gf, s2〉

The insert operation differs from the append operation only by introduction
of an unused child label sk, which marks the newly appended word Ψ .

3. Deleting Delsj (where sj ∈ S): given Φ with a non-empty Φ〈sj〉, sj =
child(si) w.r.t. SΦ, Delsj erases Φ〈sj〉 from Φ together with all Φ〈t〉 for which
sj / t.
For example, if Dels01 ∈ Fs01,1 and s0 / s01, s02 is incomparable with s01, then

Dels01(〈d, s01〉〈d, s02〉) = 〈d, s02〉

4. Copying Copysj (where sj ∈ S): given Φ with a non-empty Φ〈sj〉, sj =
child(si) w.r.t. SΦ, Copysj appends Φ〈sk〉 to Φ, where sk is a child of si w.r.t.

4 In most cases, we assume that S′ is a set of all previously used labels, hence there
is no need to write it in the square brackets in expressions like child(s0)[S′].

5 This condition implies that s2 / s1 and s0 / s2.
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SΦ ∪ {sj}, sj is fresh w.r.t. SΦ \ {si}, and then it appends all subsequences
Φ〈sl〉 labelled by the children of sj and labels them by fresh children of sl
and so on until all the sequences Φ〈t〉, where sj / t, are copied exactly once.
For example, if Copys01 ∈ Fs01,1 and s0 / s01, then

Copys01(〈d, s01〉) = 〈b, s0〉〈d, s01〉〈d, s02〉,

where s02 is incomparable with s01.

Definition 2 Let us consider a tuple G = 〈Υ,S,R,FvK1,K2
, Γ0$∆0〉 where Γ0

and ∆0 are layered words over Υ × S such that for every Γ0[i] = 〈ai, si〉 and
Γ0[j] = 〈aj , sj〉, if j > i then sj / si or sj = si, $ is a special symbol, $ /∈ Υ , and
FvK1,K2

is a finite set of layer function forms where v runs over the label set S.
For every G-word Γ$∆, where Γ and ∆ are words in LW(Υ,S), we call Γ the
visible layer, and we call ∆ the invisible layer of Γ$∆.

Let all rewriting rules from R have one of the following forms:

– Simple rule:
Ξ〈a, si〉Θ$Ψ → ΦΘ$F si(Ψ),

where all the letters of Φ are labelled either by si or by fresh descendants of
si, F

si ∈ Fsi .
– Pop rule: for Ψ〈sj〉 — the maximal subsequence of Ψ marked by some sj =

child(si) ∈ S,
Ξ〈a, si〉Θ$Ψ → Ψ〈sj〉ΦΘ$F si(Ψ),

where all the letters of Φ are labelled either by si or by fresh descendants of
si, F

si ∈ Fsi . In a pop rule, we may specify sj, but there are no ways to
specify Ψ〈sj〉.

Such a grammar G is called a multi-layer prefix grammar. K2 is called the
maximal rewrite depth. A sequence of G-words starting at Γ0$∆0 that are trans-
formed by the rules from R is called a trace of G.

If any rule of such a grammar changes only one letter of the visible layer,
then the multi-layer prefix grammar is alphabetic.

Words on the traces generated by the alphabetic multi-layer grammars are
models of the call-stack configurations that appear on the path of the process tree
during the call-by-name computations. Some pointers to a way for constructing
these models explicitly are given in the next section.

4 Modelling Call Stack Behaviour by Multi-layer
Grammars

We borrow the notions of f -function and g-function from [11] and use them in the
following sense. An f -function is a function whose definition consists of a one rule
with the trivial patterns (e. g., if h1 is defined as h1 (x1 , x2 ) = x2 + h2 (x1 + 1 )
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then h1 is an f -function). A g-function is a function with non-trivial patterns in
the definition (e. g., h2 (x + 1 ) = h2 (x ) + h2 (x ) is a definition of the g-function).

In order to get a grammar from a program, we treat every configuration
generated by the unfolding as a tree, whose nodes are named by function or
constructor names and leaves contain no function calls. First, we mark every
function name in the tree by a superscript depending on the state of the function
call. If the call is ready to be unfolded without unfolding of other calls, the
function name is marked as “ready” (by + in the superscript). Otherwise, the
function name is marked as “unready”. Hence, the call names of all f -functions
are always marked as “ready”, while the call names of g-functions are marked
as “ready” if their pattern can be matched without evaluating another call6.

Then we delete all the nodes containing static data7. The remaining nodes
are given the layer labels. If some node T is a descendant of a node W , the label
of T is greater than the label of W . Otherwise the labels are incomparable.

Finally, we find all the nodes containing the unready call names with a single
child. The child of such a node is given the label of the node. And then, all the
nodes with the same labels are merged: data from the ancestor nodes are placed
in the merged node after the data from their descendants.

The resulting tree is a tree form of the corresponding layered word.

Example 3 Given the term a(m(x1 + 1 , x1 + 1 ), s(x1 )), we transform it to a
layered word. All the steps of the transformation are given in Figure 3.

First, we mark the calls as “ready”(with + in the superscript) and “un-
ready”(with − in the superscript), and delete the nodes with the static data.
The only function call in the configuration which is ready to be unfolded without
unfolding is the outermost call of m. The call s(x1 ) requires unfolding (which
generates the narrowing on x1), but does not require unfolding of other calls, so
it is also marked as ready. The remaining call a is marked as unready.

Then we assign the layer labels in the resulting tree of the marked call names.
The tree below shows that s0 / s01, s0 / s02.

Finally, the nodes containing the names of the calls in the active stack are
extracted. These names together with the node labels take a place in the visible
part of the layered word; data from the remaining node in the tree take a place
in the invisible part.

6 There we always can determine all the calls that are ready to be unfolded due
to simplicity of the patterns. In languages with complex pattern matching (e. g.,
Refal [15]), that can be done only if one knows the strategy of the pattern matching
applied in the interpreter.

7 In some cases, this action can transform the tree into a forest. For example, that can
happen if the configuration is cons(h1 (x ), cons(h2 (x ),Nil)). To avoid these cases,
we always assume that the transformed tree has a root, but the root is a “virtual”
function call, which is always present in the G-word corresponding to the tree and
is denoted by $.
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s0 : a−

vv ��
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The initial term
Call names are marked,
static data are deleted,
layer labels are assigned

The active part
is extracted

Fig. 3. Steps transforming a(m(x1 + 1 , x1 + 1 ), s(x1 )) from a tree to layered word
〈m, s01〉〈a, s0〉$〈s, s02〉

5 Turchin’s Relation and Multi-Layer Grammars

Definition 3 Let G be a multi-layer prefix grammar with the set of rules that
rewrite N letters in the visible layer. Given a trace {Γk$∆k} and its segment
[i, j], suffix Θ of Φi is called a permanently stable suffix w.r.t. the segment [i, j]
if all the words Γk$∆k, i ≤ k < j, are of the form ΦkΘ$∆k where Φk is a layered
word with the length not less than N , and Γj is of the form ΦjΘ, where Φj may
be Λ 8. If j is not bounded, Θ is called a permanently stable suffix w.r.t. i.

Informally, a permanently stable suffix is a suffix of the visible layer that is
never changed in the trace segment starting at the i-th and ending by the j-th
G-word in the trace. In the terms of call stack behaviour, a permanently stable
suffix corresponds to an unchanged context of the computation.

Definition 4 Let G = 〈Υ,S, R,FvK1,K2
, Γ0$∆0〉 be a multi-layer prefix gram-

mar. Given two G-words Ξi = Γi$∆i, Ξj = Γj$∆j in a trace {Γk$∆k}, we
say that the words form a Turchin pair (denoted as Ξi � Ξj) if Γi = ΦΘ0,
Γj = Φ′ΨΘ0, Φ is equal to Φ′ as a plain word (up to the layer labels) and the
suffix Θ0 is permanently stable w.r.t. segment [i, j].

Lemma 1 Let us consider the Ackermann function defined as follows:

BK(M, 0) = 1
BK(0, N) = N + 1
BK(M,N) = BK(M − 1, BK(M,N − 1) ∗K)

An alphabetic multi-layer grammar G can generate bad sequences w.r.t. Turchin’s
relation not longer than BK(M,N), where K is the maximal rewrite depth of G,
M is the number of rules in the set of rewriting rules of G and N is the total
length of the initial word in the grammar.

8 In the case of alphabetic prefix grammars, when N = 1, the first condition implies
the second.



168 Antonina Nepeivoda

Example 4 A program that generates traces which are Ackermanian bad se-
quences w.r.t. Turchin’s relation can be as follows. The input point of the program
is A(< N , b(B(< 1 , 0 >)) >) (where N is an arbitrary fixed natural number).

A(< x1 + 1 , x2 >) = a(A(< x1 , x2 >));
A(< 0 , x2 >) =< x2 + 1 , 0 >;
a(< x1 + 1 , x2 >) = x1 ;
B(< x1 + 1 , x2 >) = c(c(< x1 + 1 , x2 >));
b(< x1 + 1 , x2 >) = x2 ;
c(< x1 + 1 , x2 >) =< B(b(< x1 , x2 >)) + 1 , c(c(< x1 , x2 >)) >;
c(< 0 , x2 >) =< B(b(< 1 , 0 >)) + 1 , c(c(< 0 , 0 >)) >;

The program never stops and its call-stack configurations form bad sequences of
the exponential tower length (in N) with respect to Turchin’s relation (that is, of

the length O(2
2...

2
}
N

)). However, with respect to the homeomorphic embedding
relation over the entire terms, a computation of this program for every N > 0 is
terminated on the 5 +N -th step.

6 Conclusion

Turchin’s relation for call-by-name computations is a strong and consistent
branch termination criterion, which finds pairs of embedded terms on the trace
of every infinite computation. It allows a program transformation tool to con-
struct very long configuration sequences (i. e., traces) with no Turchin pairs in
them, and although such sequences appear in real program runs almost never,
the computational power of Turchin’s relation shows that the relation can be
used to solve some complex problems. In fact, the Ackermanian upper bound on
the bad sequence length is rather a “good” property indicating that the relation
is non-trivial, than a “bad” one indicating that the whistle using the relation
will be blown too late. Example 4 shows a program that generates very long bad
sequences. But the program contains an implicit definition of the Ackermanian
function. From the practical point of view, such programs are very rare. If a
program does not generate such complex structures, its call-stack configuration
structures considered by Turchin’s relation can be modelled by a grammar be-
longing to a smaller class than the whole class of the multi-layer prefix grammars.
E.g., for the call-by-value semantics, this class coincides with the regular gram-
mars [8]. Primitively recursive functions also cannot generate too complex stack
structures: they are even incapable to compute such fast-growing functions as
the Ackermanian function. Moreover, the homeomorphic embedding can produce
even longer bad sequences than Turchin’s relation [13, 17]. Thus, the property
being described in this paper is not a thing Turchin’s relation must be blamed
of.
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Abstract. Design and Analysis of Computer Algorithms is a must of
Computer Curricula. In particular it teaches algorithm design patterns
like greedy method, divide-and-conquer, dynamic programming, backtrack-
ing and branch-and-bound. Unfortunately, all listed design patterns are
taught, learned and comprehended by examples, while they can be for-
malized as design templates, rigorously specified, and mathematically
verified. Greedy method is the only pattern that had been studied from
rigour mathematical point of view in XX century. Later, the author pub-
lished (in years 2010-2012 in separate papers) formalization, specification
and verification for three more patterns, namely dynamic programming,
backtracking and branch-and-bound. In the present extended abstract
these studies are summarized and discussed from programming theory
perspective using concepts and techniques used in Abstract Data Types,
Theory of Program Schemata, Partial and Total Correctness, program
specialization.

To commemorate 85 anniversary of A.P. Ershov (1931-1988),

a Scientist that drew my interest to Theory of Programming.

1 Introduction

Algorithm design patterns (ADP) like greedy method, divide-and-conquer, dy-
namic programming (DYN), backtracking (BTR) and branch-and-bound (B&B)
are usually considered as Classics of the Past (going back to days of R. Floyd
and E. Dijkstra). However, ADP can be (semi)formalized as design templates,
specified by correctness conditions, and formally verified either in the Floyd-
Hoare methodology, by means of the Manna-Pnueli proof-principles, or in some
other way.

Nevertheless until 2010 the only formalized method of algorithm design was
greedy method (or greedy algorithms): it was proven in years 1971-1993 [5,13,15]
that if the structure of the domain in an optimization problem is a matroid (or,
is more general, greedoid), then application of greedy algorithm guarantees a
global optimum for the problem.
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Unfortunately, further progress with DYN, BTR and B&B techniques has
degenerated into an extensive collection of “success stories” and “recipes” how
they have been used in the context of particular combinatorial or optimization
problems. This leads to educational situation when the most popular contempo-
rary textbooks on the algorithm design and implementation look like Cooking
Books [1, 4].

BTR and B&B are widely used in design of combinatorial algorithms for
(virtual) graph traversing. In particular, most global optimization methods using
interval techniques employ a branch-and-bound strategy [9] These algorithms
decompose the search domain into a collection of boxes, arrange them into a tree-
structure (according to inclusion), and compute the lower bound on the objective
function by an interval technique. Basically the strategy is an algorithm design
pattern that originates in graph traversal.

In general graph traversal refers to the problem of visiting all the nodes in a
(di)graph to find particular nodes (vertices) that enjoy some property specified
by some Boolean “criterion condition”. A Depth-first search (DFS) is a technique
for traversing a finite graph that visits the child nodes before visiting the sibling
nodes. A Breadth-first search (BFS) is another technique for traversing a finite
undirected graph that visits the sibling nodes before visiting the child nodes.

Sometimes it is not necessary to traverse all vertices of a graph to collect the
set of nodes that meet the criterion function, since there exists some Boolean
“boundary condition” which guarantees that child nodes do not meet the crite-
rion function: Backtracking (BTR) is DFS that uses boundary condition, branch-
and-bound (B&B) is DFS that uses boundary condition. Backtracking became
popular in 1965 due to research of S.W. Golomb and L.D. Baumert [11], but it
had been suggested earlier by D. H. Lehmer. Branch-and-bound was suggested
by A.H. Land and A.G. Doig in 1960 [18].

Formalization and verification of backtracking and branch-and-bound ADP
was attempted in years 2011-2012: a unified ADP for BTR and B&B was for-
malized as a design template, specified by correctness conditions, and formally
verified by means of the Manna-Pnueli proof-principles first [20] and later in the
Floyd-Hoare methodology [23].

Dynamic Programming was introduced by Richard Bellman in the 1950s [3]
to tackle optimal planning problems. At this time, the noun programming had
nothing in common with more recent computer programming and meant planning
(compare: linear programming). The adjective dynamic points out that Dynamic
Programming is related to a change of state (compare: dynamic logic, dynamic
system). Bellman equations are recursive functional equalities for the objective
function that express the optimal solution at the current state in terms of optimal
solutions at changed states. They formalize the following Bellman Principle of
Optimality : an optimal program (or plan) remains optimal at every stage.

At the same time, according to [7], R. Bellman, speaking about the 50s,
explains:

An interesting question is, “Where did the name, dynamic programming,
come from?” The 1950s were not good years for mathematical research.
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(...) Hence, I felt I had to do something to shield [the Secretary of De-
fense] and the Air Force from the fact that I was really doing mathematics
inside the RAND Corporation. (...) Let’s take a word that has an abso-
lutely precise meaning, namely dynamic, in the classical physical sense.
It also has a very interesting property as an adjective, and that is it’s
impossible to use the word dynamic in a pejorative sense. Try thinking
of some combination that will possibly give it a pejorative meaning. It’s
impossible. I thought dynamic programming was a good name. It was
something not even a Congressman could object to. So I used it as an
umbrella for my activities.

A preliminary formalization of Dynamic Programming has been published
in [21] and then in [22]. The approach

– formalizes descending Dynamic Programming ADP by a recursive program
scheme (with variable arity of functional symbols),

– formalizes ascending Dynamic Programming as a standard program scheme
(also with variable arity of functional symbols) augmented by generic dy-
namic array to compute the least fix-point (according to the Knaster-Tarski
theorem),

– proves functional equivalence of both schemes, and proves that in general
case we can’t rid of dynamic memory when implement the ascending dy-
namic programming pattern.

This extended abstract represents

in the next section 2: the unified template for Backtracking and Branch-and-
Bound, its (semi-)formal specification and main correctness statements (as
in [20,23]);

in the section 3: the unified templates for descending and ascending Dynamic
Programming, their functional equivalence statement (as in [21,22]).

The final section 4 discusses in brief examples of use of the templates and fur-
ther research topics (in particular, dynamic memory issues and partial evaluation
perspective).

2 Template for Backtracking and Branch-and-Bound

2.1 Abstract Data Type “Teque”

Let us define a special temporal abstract data type (ADT) “theque1” for the
unified representation of BTR and B&B. Theque is a finite collection (i. e. a set)
of values (of some background data type) marked by disjoint “time-stamps”.
The time stamps are readings of “global clock” that counts time in numbers
of “ticks”, they (time-stamps) never change and always are not greater than
current reading of the clock. Let us represent an element x with a time-stamp t

1 Theque – storage (Greek: theke), e. g. “discotheque”.
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by the pair (x, t). Readings of the clock as well as time-stamps are not “visible”
for any “observer”. Let us assume that this “tick” is indivisible, every action
takes a positive (integer) number of ticks, and the clocks never resets or restarts.

ADT theque inherits some set-theoretic operations: the empteq (i. e. “empty
teque”)) is simply the empty set (∅), set-theoretic equality (=) and inequal-
ity (6=), subsumption (⊂, ⊆). At the same time ADT theque has its own spe-
cific operations, some of these operations are time-independent, some others
— time-sensitive, and some are time-dependent. Let us enumerate below time-
independent operations, and describe time-dependent and time-sensitive opera-
tions in the next paragraphs.

– Operation Set: for every teque T let Set(T ) be {x : ∃t((x, t) ∈ T )} the set
of all values that belongs to T (with any time-stamp).

– Operations In and Ni: for every teque T and any value x of the background
type let In(x, T ) denote x ∈ Set(T ), and let Ni(x, T ) denote x 6∈ Set(T ).

– Operation Spec (specification): for every teque T and any predicate λx.Q(x)
of values of the background type let teque Spec(T,Q) be the following sub-
teque {(x, t) ∈ T : Q(x)}.
The unique time-dependent operation is a synchronous addition AddTo of

elements to teques. For every finite list of teques T1, ... Tn (n ≥ 1) and finite
set {x1, ... xm} of elements of the background type (m ≥ 0), let execution of
AddTo({x1, . . . xm}, T1, . . . Tn) at time t (i. e. the current reading of the clock
is t) returns n teques T ′1, ... T ′n such, that there exist m moments of time (i.
e. readings of the clock) t = t1 < ... < tm = t′ such that t′ is the moment of
termination of the operation, and for every 1 ≤ i ≤ n the teque T ′i expands
Ti by {(x1, t1), ... (xm, tm)}, i. e. T ′i = Ti ∪ {(x1, t1), ... (xm, tm)}. Let us
observe that this operation is non-deterministic due to several reasons: first, the
set of added elements {x1, ... xm} can be sorted in different manners; next,
time-stamps t1 < ... < tm can be arbitrary (starting at the current time). Let
us write AddTo(x, T1, . . . Tn) instead of AddTo({x}, T1, . . . Tn) in the case of a
singleton set {x}.

There are three pairs of time-sensitive operations: Fir and ReMFir, Las
and RemLas, Elm and RemElm. Let T be a teque. Recall that all values in
this teque have disjoint time-stamps.

– Let Fir(T ) be the value of the background type (i. e. without a time-stamp)
that has the smallest (i. e. the first) time-stamp in T , and let RemFir(T ) be
the teque that results from T after removal of this element (with the smallest
time-stamp).

– Let Las(T ) be the value of the background type (i. e. without a time-stamp)
that has the largest (i. e. the last) time-stamp in T , and let RemLas(T ) be
the teque that results from T after removal of this element (with the largest
time-stamp).

We also assume that Elm(T ) is “some” element of T (also without any time-
stamp) that is defined according to some “procedure” (unknown for us) and
RemElm(T ) is the teque that results from T after removal of this element (with
its time-stamp).



174 Nikolay Shilov

2.2 Unified Template

Let us introduce some notation that unifies representation of BTR and B&B by
a single template for graph traversing: let FEL and REM stay either for Fir
and ReMFir, or for Las and RemLas, or for Elm and RemElm. It means,
for example, that if we instantiate Fir for FEL, then we must instantiate Fir
for FEL and RemFir for REM throughout the template. Instantiation of Fir
and RemFir imposes a queue discipline “first-in, first-out” and specializes the
unified template to B&B template; instantiation of Las and RemLas imposes a
stack discipline “first-in, last-out” and specializes the template to BTR template;
instantiation of Elm and RemElm specializes the unified template to “Deep
Backtracking” or “Branch and Bounds with priorities” templates.

Let us say that a (di)graph is concrete, if it is given by the enumeration of all
vertices and edges, or by the adjacency matrix, or in any other explicit manner.
In contrast, let us say that a (di)graph G is virtual, if the following features are
given:

– a type Node for vertices of G, the initial vertex ini (of this type) such that
every vertex of G is reachable from ini;

– a computable function Neighb : Node → 2Node that for any vertex of G
returns the set of all its neighbors (children in a digraph).

In this notation a unified template for traversing a virtual graph G with the
aid of “easy to cheque”

– a boundary condition B : 2Node ×Node → BOOLEAN ,

– and a decision condition D : 2Node ×Node → BOOLEAN

for collecting all nodes that meet a “hard to cheque”

– criterion condition C : Node→ BOOLEAN

can be represented by the following pseudo-code.
VAR U: Node;

VAR S: set of Node;

VAR Visit, Live, Out: teque of Node;

Live, Visit:= AddTo(ini, empteq, empteq);

Out:= empteq; IF D({ini}, ini) THEN Out:= AddTo(ini, Out);

WHILE Live 6= empteq

DO U:= FEL(Live); Live:= REM(Live);

S:= {W ∈ Neighb(U) : Ni(W, Visit) & ¬B(Set(Visit), W)};
Live, Visit:= AddTo(S, Live, Visit);

Out:= Spec(Out, λx.D(Set(Visit), x));

IF D(Set(Visit), U) THEN Out:= AddTo(U,Out);

OD
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2.3 Correctness

An algorithm without specification is a tool without manual: no idea how to
use it and what to expect. A specified algorithm without correctness proof is a
non-certified tool, it can be dangerous in use. So we have to specify and prove cor-
rectness of our unified template. We would like to use Floyd – Hoare approach to
algorithm specification and proof [2,10]. In this approach an algorithm is speci-
fied by a precondition and a postcondition for input and output data, correctness
is proved with the aid of loop invariants by induction.

The postcondition is simple: Teque Out consists of all nodes of the graph
G (with time-stamps) that meet the criterion condition C, and each of these
nodes has a single entry (occurrence) in Out.

The precondition is more complicated, and can be presented as a conjunc-
tion of the following clauses.

1. G is a virtual (di)graph, ini is a node of G, Neighb is a function that
computes for every node the set of all its neighbors so, that all nodes of G
can be reached from ini by iterating Neighb.

2. For every node x of G the boundary condition λS.B(S, x) is a monotone
function: B(S1, x)⇒ B(S2, x) for all sets of nodes S1 ⊆ S2 (i. e. if a node is
ruled-out, then it is ruled-out forever).

3. For all nodes x and y of G, for any set of nodes S, if y is reachable from x,
then B(S, x) implies B(S, y) (i. e. if a node is ruled-out then all its successors
are ruled out also).

4. For every node x of G, the decision condition λS.D(S, x) is an anti-monotone
function: D(S2, x)⇒ D(S1, x) for all sets of nodes S1 ⊆ S2 (i. e. a candidate
node may be discarded later).

5. For every set of nodes S, if S ∪ {x ∈ G : B(S, x)} is equal to the set of all
nodes of G, then D(S, x) ⇔ C(x) (i. e. the decision condition D applied to
a set with “complete extension” is equivalent to the criterion condition C).

Proposition 1. The unified template is partially correct with respect to the
above precondition and postcondition, i. e. if the input data meet the precon-
dition and a particular algorithm instantiated from the template terminates on
the input data, then it terminates with the output that meets the postcondition.

Proposition 2. If the input graph is finite then the unified template eventually
terminates, i. e. every particular algorithm instantiated from the template always
halts traversing the graph after a finite number of steps.

The above two propositions imply the following total correctness statement
for Backtracking and Branch-and-Bound.

Corollary 1.
If the input data (including the boundary, decision and criterion conditions B,
D and C) meet the precondition, and the virtual graph G for traversing is finite,
then every particular algorithm instantiated from the template terminates after
O(|G|) iterations of the loop, so that upon termination the set Set(Out) will
consist of all nodes of the graph G that meet the criterion condition C.

Remark 1. For proofs please refer papers [20,23].
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3 Templates for Dynamic Programming

3.1 Recursive Descending Dynamic Programming

If to analyse Bellman principle then it is possible to suggest the following recur-
sive scheme as a general pattern for Bellman equations:

G(x) = if p(x) then f(x) else g(x, hi(G(ti(x)), i ∈ [1..n(x)])), (1)

where

– G is a function variable to represent an objective function from some domain
X to some range Y that are to be optimized;

– p is a predicate symbol to represent a known predicate over the same domain
X as above;

– f is a function symbol to represent a known function from the same domain
X to the same range Y ;

– g is a function symbol to represent a known operation with a variable arity
on the same domain X (i.e. a function from X∗ to X);

– all hi and ti, i ∈ N, are functional symbols to represent known functions
from the range Y to the domain X (in case of hi) and to represent known
operations on the domain X (in case of ti).

Here we understand the recursive scheme in the sense of the theory of program
schemata [8, 16, 19]. Let us refer the above recursive scheme as a recursive tem-
plate for descending Dynamic Programming.

3.2 Iterative Ascending Dynamic Programming

Let us consider a function G : X → Y that is defined by the interpreted recursive
scheme (1) of Dynamic Programming. For every argument value v ∈ X, such
that p(v) doesn’t hold, let base be the following set bas(v) of values {ti(v) : i ∈
[1..n(v)]}. Let us remark that for every argument value v, if G(v) is defined,
bas(v) is finite. Let us also observe that if the objective function G is defined for
some argument value v, then it is possible to pre-compute (i.e. compute prior
to the computation of G(v)) the support for this argument value v, i.e. the set
spp(v) of all argument values that occur in the recursive computation of G(v),
according to the following recursive algorithm

spp(x) = if p(x) then {x} else {x} ∪ (
⋃

y∈bas(x)
spp(y)). (2)

Another remark is that for every argument value v, if G(v) is defined, then
spp(v) is finite (since computation of G(v) terminates). Let us say that a function
SPP : X → 2X is an upper support approximation if for every argument value
v, the following conditions hold:

– v ∈ SPP (v),
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– spp(u) ⊆ SPP (v) for every u ∈ SPP (v),
– if spp(v) is finite then SPP (v) is finite.

Let us consider the case when some upper approximation is easier to compute,
i.e. the (time and/or space) complexity of the available algorithm to compute it
is better than the complexity of the available algorithm that computes G. Then
it makes sense to use iterative ascending Dynamic Programming.

Ascending Dynamic Programming comprises the following steps.

1. Input argument value v and compute SPP (v). Let G be an array (in Pascal
style) var G : Y array of SPP (v) of Y -values indexed by values in SPP (v).
Then compute and save in the array G values of the objective function G
for all arguments u ∈ SPP (v) such that p(u): G[u] := f(u).

2. Expand the set of saved values of the objective function by values that can
be immediately computed on the basis of the set of saved values: for every
u ∈ SPP (v), if G(u) has not been computed yet, but for every w ∈ bas(u)
the value G(w) has already been computed and saved in G[w], then compute
and save G(u) in G[u]: G[u] := g(u, (hi(G(ti(u))), i ∈ [1..n(u)])).

3. Repeat Step 2 until the moment when the value of the objective function for
the argument v is saved.

The ascending Dynamic Programming is an imperative iterative procedure.

3.3 Formalization

Let us formalize iterative ascending Dynamic Programming by means of an
imperative pseudo-code annotated by precondition and postcondition [10].

Precondition:
D is a non-empty set of argument values,
S and P are “trivial” and “target” subsets in D,
F : 2D → 2D is a call-by-value total monotone function,
ρ : 2D×2D → Bool is a call-by-value total function monotone on the second
argument.

Peseudo-code:
VAR U= S, V: subsets of D;

REPEAT V:= U; U:= F(V)∪S UNTIL (ρ(P,U) or U=V)
Postcondition: ρ(P,U) ⇔ ρ(P, T ),

where U is the final value of the variable U upon termination
and T is the least set of D such that T = (F (T ) ∪ S).

Here the initialization U= S corresponds to the first step of the informal descrip-
tion of ascending Dynamic Programming, the second assignment U:= F(V) in
the loop body corresponds to the second step, and the loop condition ρ(P,U)
corresponds to the condition at the third step; an auxiliary variable V, the first
assignment V:= U and condition U=V are used for termination in case when no
further progress is possible.

We would like to refer to this formalization as the iterative ascending Dy-
namic Programming template.
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3.4 Correctness and Equivalence

Proposition 3. (Knaster-Tarski fix-point theorem [14])
Let D be a non-empty set, G : 2D → 2D be a total monotone function, and R0,
R1, ... be the following sequence of D-subsets: R0 = ∅ and Rk+1 = G(Rk) for
every k ≥ 0. Then there exists the least fix-point T ⊆ D of the function G and
R0 ⊆ R1 ⊆ R2 ⊆ . . . Rk ⊆ Rk+1 ⊆ . . . ⊆ T .

The following two propositions are trivial consequences of the above one.

Proposition 4.
Iterative ascending Dynamic Programming template is partially correct.

Proposition 5. Assume that for some input data the precondition of the it-
erative ascending Dynamic Programming template is valid and the domain D
is finite. Then the algorithm generated from the template terminates after |D|
iterations of the loop.

In turn they imply the following (functional) equivalence statement for re-
cursive (descending) and iterative (ascending) Dynamic Programming.

Corollary 2.
Let G be an arbitrary function defined by interpreted recursive scheme 1. Let

– D be a generic dynamic array {(u,G(u)) : u ∈ SPP (v)}, where SPP (v) is
an upper support approximation;

– S be {(u, f(u)) : p(u) and u ∈ SPP (v)} and P be a singleton {(v,G(v))};
– F be λQ ⊆ D. {(u,w) ∈ D | n = n(u),

∃w1, . . . wn : (t1(u), w1), . . . (tn(u), wn) ∈ Q,
and w = g(u, h1(w1), . . . hn(wn))};

– ρ be λQ.(P ⊆ Q) (that is equivalent to λQ ⊆ D.(∃w : (v, w) ∈ Q)).

Then, the algorithm resulting from the iterative ascending Dynamic Program-
ming template after the specified specialization is totally correct, the final value
U of the variable U contains a single pair (v, y), and y in this pair equals to G(v).

Remark 2. For proofs please refer paper [22].

4 Conclusion

We have represented in this extended abstract the unified template for Back-
tracking and Branch-and-Bound, and templates for recursive (descending) and
iterative (ascending) Dynamic Programming, specified these templates by means
of (semi-formal) precondition and postcondition, stated the total correctness and
functional equivalence (for Dynamic Programming) for the templates. “Manual”
formal proofs of propositions and corollaries stated in this extended abstract can
be found in papers [20–23].

In the cited papers [20–23] one can find the following examples of specialisa-
tion of the presented templates:
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– in papers [20, 23] unified BTR and B&B template was specialized to solve
Discrete Knapsack Problem,

– in papers [21,22] Dynamic Programming templates were specialised to solve
a toy sample Dropping Bricks Puzzle as well as for solving finite position
games and to Cocke-Younger-Kasami algorithm for parsing of context-free
language.

Basically, the primary purpose of the specified and verified templates for
algorithm design patterns is to use them for (semi-)automatic specialization of
the patterns to generate correct but more efficient algorithms to solve concrete
problems. One may observe that this purpose is closely related to purpose of
Mixed Computations [6] and/or Partial Evaluation [12]; the difference consists
in level of consideration: in our case we speak about algorithm design and use
pseudo-code while in Mixed Computations and Partial Evaluation programming
languages and program code are in use. Nevertheless further studies of algorithm
design templates from Mixed Computations and Partial Evaluation perspective
may be an interesting research topic. In particular, it may be interesting to try
to building-in algorithm design templates into an educational IDE (Integrated
Development Environment) to support (semi-)automatic algorithm generation.

Another interesting topic for theoretical research is a need of dynamic mem-
ory either for teque or generic array implementation. In particular, we demon-
strated that every function defined by the recursive scheme of Dynamic Pro-
gramming may be computed by an iterative program with a generic dynamic
array. The advantage of the translation is the use of an array instead of a stack
generally required to translate recursion. Nevertheless a natural question arises:
may finite static memory suffices for computing this function? Unfortunately, in
general case the answer is negative according to the following proposition proved
by M.S. Paterson and C.T. Hewitt [16,19].

Proposition 6. The following special case of general recursive scheme of de-
scending Dynamic Programming (1)

F (x) = if p(x) then x else f(F (g(x)), F (h(x)))

is not equivalent to any standard program scheme (i.e. an uninterpreted iterative
program scheme with finite static memory).

This statement does not mean that dynamic memory is always required; it
just means that for some interpretations of uniterpreted symbols p, f , g and h
the size of required memory depends on the input data. But if p, f , g and h
are interpreted, it may happen that function F can be computed by an iterative
program with a finite static memory. For example, it is possible to prove that
Dropping Bricks Puzzle [22] can be solved by an iterative algorithm with two
integer variables. Two other examples of this kind are the factorial function and
Fibonacci numbers

Fac(n) = if n = 0 then 1else n× Fac(n− 1),
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Fib(n) = if n = 0 or n = 1 then 1 else F ib(n− 2) + Fib(n− 1);

they both match the pattern of scheme in the above proposition, but three inte-
ger variables suffice to compute them by iterative programs. So, the next problem
for further research is about those of functions that can be computed with fi-
nite static memory (i.e. like the optimal number of bricks droppings, factorial
values or Fibonacci numbers) by iterative imperative algorithms generated from
ascending dynamic programming.

Another research topic is about use of different fix-points in the Dynamic
Programming context. A unified logical approach to a variety of fix points can
be found in [17]; a natural question follows: what if to use for algorithm design
other fix-points (studied in the cited paper) than the least one?
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